79 research outputs found

    Impact of the lubricant on a modified revolving vane expander (M-RVE) in an organic Rankine cycle system

    Get PDF
    The expansion device is the critical component of micro-to-small scale organic Rankine cycle (ORC) systems, substantially affecting system efficiency and cost. Low isentropic efficiency and lubrication requirements are the main issues associated with using volumetric expanders in ORC systems. Despite lubrication contributing to reducing internal leakages in an expander, it may compromise the performance of the ORC system by adversely affecting the evaporator’s thermal capacity. This study tests a recently developed and modified revolving vane expander (M-RVE) in a micro-scale ORC test rig by implementing an adjustable oil mass flow rate. The impact of the lubricant oil on the performance of the M-RVE prototype is investigated within a wide range of oil circulation rates (OCR). The results demonstrate a negligible improvement in the filling factor for OCRs higher than 1%. Moreover, the shaft power is not considerably sensitive to OCR, while the calculated isentropic efficiency of the expander improves with OCR. Furthermore, the impact of the lubricant oil on the performance of the evaporator is studied, assuming the exact OCR as the expander and measured temperature and pressure similar to the pure refrigerant for the lubricant-refrigerant mixture in the evaporator. The study shows that the evaporator capacity is penalized with OCR, especially for values higher than 1%. Hence, an OCR of about 1% is a good compromise, and it can be used as a guideline for designing revolving vane expanders for micro-scale ORC systems without a dedicated lubricant oil circuit

    Simulation analysis of an innovative micro-solar 2kWe Organic Rankine Cycle plant coupled with a multi-apartments building for domestic hot water supply

    Get PDF
    Combined heat and power plants driven by renewable energy sources (RES) are becoming more and more popular, given the energy transition towards the integration of more renewable energy sources in the power generation mix. In this paper an innovative micro-solar 2kWe/18kWth Organic Rankine Cycle system, which is being developed by the consortium of several Universities and industrial organizations, with the funding from EU under the Innova MicroSolar project, is considered. In particular, its application to supply electricity and thermal energy for Domestic Hot Water (DHW) in a residential building is investigated by means of simulation analysis. Different Domestic Hot Water supply plant configurations are evaluated and the design parameters are varied in order to determine the best configuration to recover as much energy as possible from the ORC, while maintaining the final users’ comfort. It was found out that with the considered plant around 67% of the Domestic Hot Water energy demand of 15 apartments can be satisfied with a water storage tank of 10’000 liters. However, in order to always guarantee the supply water temperature, a back-up boiler, which serves directly the final users when needed, is requested

    Black box modelling of a latent heat thermal energy storage system coupled with heat pipes

    Get PDF
    This paper presents black box models to represent a LHTESS (Latent Heat Thermal Energy Storage System) coupled with heat pipes, aimed at increasing the storage performance and at decreasing the time of charging/discharging. The presented storage system is part of a micro solar CHP plant and the developed model is intended to be used in the simulation tool of the overall system, thus it has to be accurate but also fast computing. Black box data driven models are considered, trained by means of numerical data obtained from a white box detailed model of the LHTESS and heat pipes system. A year round simulation of the system during its normal operation within the micro solar CHP plant is used as dataset. Then the black box models are trained and finally validated on these data. Results show the need for a black box model that can take into account the different seasonal performance of the LHTESS. In this analysis the best fit was achieved by means of Random Forest models with an accuracy higher than 90%.This study is a part of the Innova MicroSolar Project, funded in the framework of the European Union’s Horizon 2020 Research and Innovation Programme (grant agreement No 723596). Prof. Cabeza would like to thank the Catalan Government for the quality accreditation given to their research group (2017 SGR 1537). GREA is certified agent TECNIO in the category of technology developers from the Government of Catalonia. Dr. Alvaro de Gracia has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 712949

    Analysis of labour market needs for engineers with enhanced knowledge in renewable energy in some European and Latin-American Countries

    Get PDF
    One of the main challenges related to the renewable energy labour market is that of human capital and as a consequence the educational profile of future employees is of paramount importance. Unfortunately, the skill level gained at University does not always fit with the practical needs of industry thus reducing the benefit-cost ratio of new employees and slowing down the transition to a green economy. Within this context, ‘The Crux’ project co-funded by EU under the framework of the Erasmus + programme aims at improving the renewable energy engineering curriculum at different university levels in several Universities of Latin America and Europe. In order to better appreciate the potential impact of the project, a survey on the labour market need for specialists with enhanced knowledge and skills in renewable and sustainable energy technologies has been conducted in the related EU and Latin America countries. More precisely, 60 organizations have been interviewed and almost 70% of them are interested in employing engineers with enhanced knowledge on renewable energy in the next three years. The analysis has shown significant discrepancies between EU and Latin American organizations. In fact, while future employees in EU countries will be mainly related to solar energy and management, the former together with wind and biomass will represent the main renewable energy working sector in Latin American countries. Moreover, MSc level will be the most demanded in EU while bachelor education seems to satisfy the future industry requirements in Latin America. Despite each country having its own needs, the research carried out under this EU project confirms the potential of renewable energy education on the global labour market in the near future

    Analysis of labour market needs for engineers with enhanced knowledge in sustainable renewable energy solutions in the built environment in some Asian countries

    Get PDF
    Despite the rapid growth in the uptake of renewable energy technologies, the educational profile and the skills gained at University level do not always comply with the practical needs of the organisations working in the field. Furthermore, even though the residential sector has very high potential in curbing its CO2 emissions worldwide thus meeting the challenging goals set out by the international agreements, such reduction has been limited so far. Within this context, the 'Skybelt' project, co-funded by the EU under the framework of the Erasmus + programme aims at enhancing in several Universities of Asia and Europe the engineering skills of students of all level for application of sustainable renewable energy solutions in the built environment. With the target of increasing the employability of graduates and the impact of the project, a survey on the labour market needs for specialists with enhanced knowledge and skills in the topic of the project has been conducted in the related Asian countries. Hence, relevant industries, labour market organisations and other stakeholders have been interviewed and the main results of this analysis is reported in the present paper. As first outcome of this activity, the obtained results have been considered in the selection of the modules to be improved according to a student centred study approach
    • …
    corecore