75 research outputs found

    Compact 3-D-Printed Circularly Polarized Antenna for Handheld UHF RFID Readers

    Get PDF
    In this letter, the aptness of the combination of three-dimensional (3-D) printing and radio frequency identification (RFID) is faced by presenting a compact, low-profile, and cost-effective circularly polarized antenna for handheld UHF RFID reader. The radiating element has been realized through a circular array of four inverted-F monopoles, where the array elements are excited with a 90° phase offset through a microstrip feeding network, realized in 3-D printing technology as well. Taking advantage from low losses and moldability of the 3-D printing materials joint to a specific design strategy, the proposed antenna realizes an improved gain and an appreciable size reduction if compared with the state of the art

    Smart Prototyping Techniques for UHF RFID Tags: Electromagnetic Characterization and Comparison with Traditional Approaches

    Get PDF
    Over the last few years, the active and growing interest in Radiofrequency Identification (RFID) technology has stimulated a conspicuous research activity involving design and realization of passive label-type UHF RFID tags customized for specific applications. In most of the literature, presented and discussed tags are prototyped by using either rough-and-ready procedures or photolithography techniques on rigid Printed Circuit Boards. However, for several reasons, such approaches are not the most recommended, in particular they are rather time-consuming and, moreover, they give rise to low quality devices in one case, and to cumbersome and rigid tags in the other. In this work, two alternative prototyping techniques suitable for cost-effective, time-saving and high-performance built-in-lab tags are introduced and discussed. The former is based on the joint use of flexible PCBs and solid ink printers. The latter makes use of a cutting plotter to precisely shape the tag antenna on thin copper sheets. Afterwards, a selection of tags, designed and manufactured by using both traditional and alternative techniques, is rigorously characterized from the electromagnetic point of view in terms of input impedance and whole tag sensitivity by means of appropriate measurement setups. Results are then compared, thus guiding the tag designer towards the most appropriate technique on the basis of specific needs

    Design of Passive RFID Sensor Tags Enhanced by a Novel Logical Communication Procedure over LLRP

    Get PDF
    Over the past decade, electromagnetic and communication science societies, along with improving the classical RFID technology, have put in a great deal of effort in designing novel and more complex UHF RFID tags with augmented capabilities. Novel tags offer additional functionalities besides identification by embedding sensors, actuators, and processing units. In this work an enhanced version of one of such devices, called SPARTACUS, is presented. While being completely passive, it conjugates identification, sensing, local computing, and actuation control and enables a proactive communication with any standard RFID reader. The paper presents details on a novel logical communication procedure over Low Level Reader Protocol (LLRP), besides discussing system validation and performance evaluation

    On the use of passive UHF RFID tags in the pharmaceutical supply chain: a novel enhanced tag versus high-performance commercial tags

    Get PDF
    Item-level RFID-based tracing systems are of growing interest both from industrial and scientific standpoints. In such a context, the choice of the most adequate RFID tag, in terms of shape, frequency, size and reading range, is crucial. The potential presence of items containing materials hostile to the electromagnetic propagation exacerbates the problem. In addition, the peculiarities of the different RFID-based checkpoints make the requirements for the tag even more stringent. In this work, the performance of several commercial UHF RFID tags in each step of the pharmaceutical supply chain has been evaluated, confirming the foreseen criticality. On such basis, a guideline for the electromagnetic design of new high-performance tags capable of overcoming such criticalities has been defined. Finally, driven by such guidelines, a new enhanced tag has been designed, realised and tested, demonstrating that high performance item-level tracing systems can actually be implemented also in critical operating conditions. Copyright © 2013 Inderscience Enterprises Ltd

    Inertially-Controlled Two-dimensional Phased Arrays by Exploiting Artificial Neural Networks and Ultra-Low-Power AI-based Microcontrollers

    Get PDF
    The use of Artificial Intelligence (AI) in electronics and electromagnetics is opening many attractive research opportunities related to the smart control of phased arrays. This is particularly challenging especially in some high-mobility contexts, such as drones, 5G, automotive, where the response time is crucial. In this paper a novel method combining AI with mathematical models and firmware for orientation estimation is proposed. The goal is to control two-dimensional phased arrays using an Inertial Measurement Unit (IMU) by exploiting a feed-forward neural network. The neural network takes the IMU-based beam direction as input and returns the related phase shift matrix. To make the method computationally efficient, the network structure is carefully chosen. Specific and discretized cross-section regions of the array factor (AF) main lobe are considered to compute the phase shift matrices, used in turn to train the neural network. This approach achieves a balance between the number of phase-shifting processes and spatial resolution. Without loss of generality, the proposed method has been tested and verified on 4Ă— 4 and 6Ă— 6 arrays of 2.4 GHz antennas. The obtained results demonstrate that reconfigurability time, easiness of use, and scalability are suitable for a wide range of high-mobility applications

    An IoT-Aware Architecture for Smart Healthcare Systems

    Get PDF
    none7Over the last few years, the convincing forward steps in the development of Internet-of-Things (IoT) enabling solutions are spurring the advent of novel and fascinating applications. Among others, mainly Radio Frequency Identification (RFID), Wireless Sensor Network (WSN), and smart mobile technologies are leading this evolutionary trend. In the wake of this tendency, this paper proposes a novel, IoTaware, smart architecture for automatic monitoring and tracking of patients, personnel, and biomedical devices within hospitals and nursing institutes. Staying true to the IoT vision, we propose a Smart Hospital System (SHS) which relies on different, yet complementary, technologies, specifically RFID, WSN, and smart mobile, interoperating with each other through a CoAP/6LoWPAN/REST network infrastructure. The SHS is able to collect, in real time, both environmental conditions and patients’ physiological parameters via an ultra-low-power Hybrid Sensing Network (HSN) composed of 6LoWPAN nodes integrating UHF RFID functionalities. Sensed data are delivered to a control center where an advanced monitoring application makes them easily accessible by both local and remote users via a REST web service. The simple proof of concept implemented to validate the proposed SHS has highlighted a number of key capabilities and aspects of novelty which represent a significant step forward compared to the actual state of art.restrictedCATARINUCCI L.; DE DONNO D.; MAINETTI L.; PALANO L.; PATRONO L.; STEFANIZZI M.; TARRICONE L.Catarinucci, Luca; DE DONNO, Danilo; Mainetti, Luca; Palano, L.; Patrono, Luigi; Stefanizzi, MARIA LAURA; Tarricone, Lucian

    An IoT-aware Architecture to improve Safety in Sports Environments

    Get PDF
    The introduction of Internet of Things enabling technologies into the sport and recreational activities domain provide an interesting research challenge. Their adoption could significantly improve the sport experience and also the safety level of team sports. Despite this, only few attempts have been done to demonstrate the benefits provided by use of IoT technologies in sport environments. To fill this gap, this paper propose an IoT-aware Sport System based on the jointly use of different innovative technologies and standards. By exploiting the potentialities offered by an ultra-low-power Hybrid Sensing Network (HSN), composed of 6LoWPAN nodes integrating UHF RFID functionalities, the system is able to collect, in real time, both environmental parameters and players’ physiological data. Sensed data are then delivered to a Cloud platform where a monitoring application makes them easily accessible via REST Web Services. A simple proof of concept has demonstrated the appropriateness of the proposed solution

    Electromagnetic Performance Estimation of UHF RFID Tags in Harsh Contexts

    Get PDF
    Radio-Frequency Identification (RFID) technology is a consolidated example of electromagnetic system in which passive labels equipped with flexible antennas, called tags, are able to use a portion of the electromagnetic energy from the reader antennas, power-up their internal circuitry and provide the automatic identification of objects. Being fully-passive, the performance of RFID tags is strongly dependent on the context, so that the selection of the most suitable tag for the specific application becomes a key point. In this work, a cost-effective but accurate system for the over-the-air electromagnetic characterization of assembled UHF RFID tags is firstly presented and then validated through comparison with a consolidated and diffused measurement systems. Moreover, challenging use-cases demonstrating the usefulness of the proposed systems in analyzing the electromagnetic performance of label-type tags also when applied on materials on different shape or embedded into concrete blocks have been carried out
    • …
    corecore