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ABSTRACT The use of Artificial Intelligence (AI) in electronics and electromagnetics is opening many
attractive research opportunities related to the smart control of phased arrays. This is particularly challenging
especially in some high-mobility contexts, such as drones, 5G, automotive, where the response time is crucial.
In this paper a novelmethod combiningAIwithmathematicalmodels and firmware for orientation estimation
is proposed. The goal is to control two-dimensional phased arrays using an Inertial Measurement Unit (IMU)
by exploiting a feed-forward neural network. The neural network takes the IMU-based beam direction as
input and returns the related phase shift matrix. To make the method computationally efficient, the network
structure is carefully chosen. Specific and discretized cross-section regions of the array factor (AF) main lobe
are considered to compute the phase shift matrices, used in turn to train the neural network. This approach
achieves a balance between the number of phase-shifting processes and spatial resolution. Without loss of
generality, the proposed method has been tested and verified on 4× 4 and 6× 6 arrays of 2.4 GHz antennas.
The obtained results demonstrate that reconfigurability time, easiness of use, and scalability are suitable for
a wide range of high-mobility applications.

INDEX TERMS Two-dimensional phased array, planar array, AI-based microcontroller, neural network,
radio front-end.

I. INTRODUCTION
The design of smart electronic and electromagnetic systems
for controlling phased arrays and radio antenna front-ends
using artificial intelligence (AI) is gaining increasing atten-
tion from the scientific community. Indeed, more and more
users can interact with each other through countless mobile
devices that are increasingly connected. In this scenario,
there is a strong and massive need for efficient algorithms
and edge-computing methods to enhance the communication
systems by controlling phased arrays radiation patterns, par-
ticularly in some high-mobility applications, such as those
related to unmanned aerial vehicles (UAVs) —where a com-
munication link with ground control stable over time and
regardless of orientation is mandatory— rather than to 5G and
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automotive —where the reconfigurability time is a crucial
parameter. Some works focus on specific material and chem-
ical properties to obtain smart electronic devices, such as
the use of graphene to have frequency selective surfaces [1].
Furthermore, other works relate to electronically controlled
antennas with the aim of optimizing the radiation pattern
without moving the radiators. For instance, compact-size,
low-cost antennas have been recently proposed to realize
electronically switchable radiation patterns [2] and recon-
figurable polarizations [3], [4]. A two-dimensional scan-
ning smart antenna is presented in [5] to realize a cognitive
radio. To concentrate signals at desired directions, reconfig-
urable antenna arrays can be used, such as shape changeable
devices [6], or rather a set of array elements can be selected,
thereby considering subarrays and reducing complexity [7].

Recently, neural networks have been introduced to con-
trol phased array, reducing the computational complexity
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required by traditional driving methods. For example, neural
networks have been largely used to accurately estimate the
direction of arrival (DOA) [8], [9] in place of classical tech-
niques based on multiple signal classification (MUSIC) [10].
In the last decade, promising algorithms of machine learning
(ML) have been suggested to make smart antennas [11], [12]
and some of them combine traditional approaches, such as
MUSIC, with ML [13]. As a branch of ML, deep learning
(DL) has been also applied owing to its capability to extract
features layer-by-layer and to combine them at different lev-
els [14], [15], [16], [17], [18], [19]. For instance, some DL
models are applied to smart antennas with the aim of reduc-
ing the energy consumption and increasing efficiency [20].
DL is robust with respect to data variations and flexible to
be adapted to new problems when dealing with unknown
configurations, because of its automatic feature detection.
Nevertheless, it requires very large amount of data with
respect to other techniques and it is computationally oner-
ous to train due to the model complexity. As an alternative,
supervised learning techniques of ML can be implemented
when a-priori knowledge is available, for example on the
number of radiation elements and on their position in antenna
arrays. At this regards, innovative methods based on sup-
port vector machine (SVM) [21], [22], [23], [24], [25] and
radial basis function (RBF) [26], [27], [28], [29] have been
proposed. Novel approaches have been suggested both to
perform detection and DOA estimation by means of a neural
multiple source tracking (N-MUST) algorithm that consists
in a family of radial basis function neural networks [30].

In parallel with the rise of innovative techniques of AI,
the objective of focusing the radiated power towards a spe-
cific direction (or estimating the DOA) can be achieved by
introducing inertial systems, such as Inertial Measurement
Units (IMUs), to get the absolute antenna orientation. For
example, in [31] an IMU is used to correct the orientation
according to the signal level; in [32] an IMU is integrated into
a GPS based-on system to achieve high position accuracy;
in [33] the DOA is estimated using virtual antenna arrays
where the array coordinates are estimated from raw IMU
measurements. It is worth highlighting that the IMU based-on
algorithms are generally used either to mechanically drive an
antenna or to support localization systems, but none of them
is employed to electronically control the antenna beam by the
phase shift matrix. To solve this problem, the combined use of
both supervised learning methods of ML and inertially-based
models could be a winning approach.

In this paper, a novel method is purposely proposed to
control two-dimensional phased arrays by exploiting both
an IMU-based algorithm and a feed-forward neural network.
The IMU acts as an inertial sensor, integrating an accelerome-
ter, a gyroscope and a magnetometer into a unique board. The
purpose of changing the radiation pattern is achieved through
phase shifters, able to alter the phase electronically, thus
quickly steering the beam to the desired direction. For this
aim, the feed forward neural network receives the processed

IMU data as input and returns the phase shift for each radiator
as output. The network is trained by processing a set of sam-
ples, each of which contains a known pointing direction and
the related phase shifts. To optimize the network structure,
in terms of the number of nodes in the hidden layer and
to speed up the training phase (assignment of weights) the
number of training samples is suitably chosen. Moreover,
the main lobe of the array factor has been cross-sectioned at
selectable level curves (at −3dB in this paper without loss
of generality). This allows to achieve the best compromise
between number of phase-shifting processes over the time
and spatial resolution. Since the network structure is a-priori
determined and appropriate weights of the neural connections
are found after training once for all, the proposed approach is
much faster than exploring maps simply obtained by finding
themaximumvalue of the array factor for different phase shift
configurations.

II. FEED-FORWARD NEURAL NETWORK TO CONTROL
RADIATION PATTERN OF TWO-DIMENSIONAL ARRAYS
In this section the proposed method to control the radiation
pattern of a generic array based on processed inertial data
is presented by exploiting a feed-forward neural network.
At this regards the problem is to link 3D orientation data,
generally available in form of rotation matrices or quater-
nions, with a corresponding phase shift matrix that is used
to drive the array. The process of determining the phase
shift matrix corresponding to a desired pointing direction
is not trivial under both mathematical and computational
point of view, especially when a rapid and stable radia-
tion pattern reconfiguration is expected to follow the array
movements.

Formally, the inverse problem of extracting the phase shifts
related to the point at which the radiated power is maximum
should be solved. Unfortunately, it is not possible to find a
solution in closed form to this kind of problems. To over-
come this limit, the proposed approach consists in solving
the direct problem of finding the target direction starting
from the phase shift matrix, and using the obtained outcomes
to train a feed-forward neural network. After training, the
inverse problem assumes the form of a solvable classification
problem, whose complexity is reduced, in terms of required
time and memory resources.

To rigorously explain the whole approach, some theoretical
considerations are recalled in the following.

A N-by-M planar array is illustrated in Fig. 1 with respect
to the Cartesian reference system having coordinates x, y and
z and origin O.

The generic element at position (n,m) is excited by means
of a signal with amplitude an,m and phase ϕn,m. The related
well-known formula of the Array Factor AF is given in (1),
where ψ1 and ψ2 are expressed in (2) and (3) respectively,
with respect to the distance d between two generic elements,
to the wave number β = 2π/λ, the zenith angle θ varying in
the interval [0, π ] and the azimuthal angle ϕ varying in the
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FIGURE 1. The two-dimensional array and the considered reference
system.

interval [0,2π].

AF =

N∑
n=1

M∑
m=1

an,mejψ1(n−1)ejψ2(m−1)ejϕn,m (1)

ψ1 = βd sin θ cosφ (2)

ψ2 = βd sin θ sinφ (3)

The signal phase ϕn,m is the generic element of the phase
shift matrix 8 as indicated in (4).

8 =

 ϕ11 ϕ1M
. . .

ϕN1 ϕNM

 (4)

A. DIRECT PROBLEM AND TRAINING OF THE
NEURAL NETWORK
The direct problem, mainly consisting in the evaluation of the
maximum value of |AF| for a given 8, must be preliminary
solved to train the neural network. If the phase shift matrix
8 is known, the module of the array factor is a function
of two variables |AF(θ , φ)|, that are the angles θ and φ.
In order to evaluate the maximum value of the two-variable
function, the first step is to find the critical points (θ∗, φ∗)
where the gradient is the null vector ∇(|AF(θ∗, φ∗)|) =

0. Then, the second partial derivative test can be carried
out and the determinant of the Hessian matrix can be cal-
culated to evaluate the surface concavity. Alternatively, the
gradient ascent method (or equivalently the gradient descent
method for the dual minimum problem) can be implemented
to find the local maximum by starting from an initial point
(θ0, φ0) and evaluating the gradient at each step to converge
toward (θ∗, φ∗).

Based on these theoretical aspects, the neural network can
be trained by assigning a number k of samples, in terms of
critical points (θ∗

1, φ
∗

1 ), . . . ,(θ
∗
k , φ

∗
k ) and corresponding shift

phase matrices 81,. . . , 8k , as illustrated in Fig. 2, where the
network structure is also shown in terms of input, hidden and
output layers.

On the one hand, the higher is k the better is the per-
formance reached in terms of minimum classification error.
On the other hand, higher values of k implicate a great

FIGURE 2. The direct problem and the feed-forward neural network.

FIGURE 3. The normalized array factor and cross sections.

number of neuronal units in the hidden layer of the neural
network with higher computational load, longer response
time, and possible lack of convergence. In this circumstance,
the system could be stressed out by continuous updates of
the phase shift matrix thus getting orientation-sensitive until
it becomes unstable, also for small perturbations or sens-
ing noise. In other words, the radiation pattern would be
constantly reconfigured owing to extremely closed points
with consequent important delays, local oscillations, and
instability.

To avoid these drawbacks, the training process explained
in Fig. 2 is closely enhanced by taking into consideration the
power beamwidth extracted from level curves of the array
factor. Specifically, the array factor normalized with respect
to themaximumAFnorm = |AF(θ , φ)|/ |AF(θ∗, φ∗)| is consid-
ered to define common cutting planes useful to facilitate the
process of arrangement of samples for training the network.

As reported in the inset of Fig. 3, the graph of AFnorm
is a surface that can be sectioned by planes parallel to the
coordinate plane θφ. The level curves as cross sections of the
main lobe taken at different quotes and related to the specified
dB value are also illustrated in Fig. 3. Once set the cutting
level, a sufficient number of regions enclosed by the level
curves should be considered to fill the whole rectangular
region of the plane θφ in Fig. 3 for all possible values of θ
and φ.
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In this way, the specific phase shift matrix related to the
maximum point (θ∗, φ∗) can be associated with the region
that contains such a maximum point. Consequently, the num-
ber of samples k can be drastically reduced, and it can be suit-
ably tuned, by acting on the cutting level, in order to achieve
the desired compromise among the number of available phase
shift matrices, the spatial resolution, and the system response
time.

Based on the previously explained approach, a more effi-
cient way to design and train the feed-forward neural network
can be implemented. At this regard, the first step is to generate
a set of random points (θ , φ) uniformly distributed in the
rectangular region of the plane θφ of Fig. 3. Each random
point is labeled according to the region subtended by the level
curve at the chosen quote to which it belongs, as shown in
Fig. 4 for the case of -3dB. In this particular case, which
is considered without loss of generality, all the boundary
points lying on the curve at -3dB concern with the half-power
beamwidth (HPBW).

Once all the random points are labeled and assigned to
each membership region, associated to the related phase shift
matrix, and represented by a specific class label, the dataset
to train the neural network is complete. For instance, in Fig. 4
a focus on two class labels of Fig. 3 is given to better describe
the proposed approach. As observed, the black points are
assigned to a class label (i.e., class label 1) and the cyan points
are assigned to another one (i.e., class label 5). Of course,
the procedure is iterated to consider all the class labels as
depicted by the green points in Fig. 4. It is worth highlighting
that some intersections among level curves can occur and
some random points can lie on the intersection region as
shown by the gray region obtained from the level curves at
-3dB in Fig. 4. In order to classify these points, the normalized
array factors AFnorm associated to each superimposed region
are evaluated for them. Each of such points in the intersection
is then assigned to the label class for which the greater
calculated value of AFnorm is obtained. After generating the
set of random points and labeling all of them, the collected
samples can be used to train the neural network. For the
sake of clearness, all the described steps of the method are
summarized in Fig. 5.
The training process consists in determining the weights of

neural connections, that are the network parameters useful to
obtain the required link between the input point (θ , φ) and the
output class label, thus regulating the network.

In detail, the weights are adjusted by the Levenberg-
Marquardt algorithm [34], that is an iterative procedure to
minimize the error between obtained and desired output
values. The number of input nodes of the input layer is
predetermined by the number of features in the input data,
that are the two angles (θ , φ) defining the target direction.
As well, the number of output nodes of the output layer is
predetermined by the number of classes in the outcome, that
correspond to the specific phase shift matrices used to drive
the two-dimensional antenna array. As regards the neurons in

FIGURE 4. The labeling process from the level curves of normalized array
factors.

FIGURE 5. The steps to arrange the training dataset useful to control the
radiation pattern of the two-dimensional array of antennas.

the hidden layer, there is no analytical approach to determine
their number and it has to be chosen according to the amount
of training data. This choice is critical because the hidden
layer plays a crucial role to take away the risk of a system
that is computationally expensive and slow to train and test.
If this parameter is carefully fixed, the neural network appears
to be the best solution for the inverse problem of determining
the phase shift matrix needed to control the radiation pattern
by fixing the target direction.

B. PROCESSING OF IMU DATA TO CONTROL THE
RADIATION PATTERN
The aim of controlling the radiation pattern for the two-
dimensional array of antennas is achieved by exciting the
array elements with appropriate shift phases. In more detail,
the array can be electrically driven to concentrate the radiated
power at a specific target direction according to the IMU
data. The inertial sensor data are processed by implement-
ing a complementary filter and an analytic geometry model
according to the scheme in Fig. 6.

The considered IMU has nine degrees of freedom and it
includes a triaxial accelerometer, gyroscope and magnetome-
ter rispectively. It is used to measure the proper acceleration
(rate of change of velocity in g), the angular velocity (in
rad/s) and the relative change of magnetic field (in T ) of the
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FIGURE 6. The whole procedure to control the radiation pattern by
processing the IMU data through complementary filter and analytical
geometry model.

two-dimensional array or rather of the mobile device where
it is placed on. These quantities are combined by a properly-
designed filter to keep track of the spatial orientation. When
using only an accelerometer, all forces acting are detected,
small forces can disturb the process of orientation estimation
and driving forces are also perceived in actuated systems.

Moreover, the exclusive use of a gyroscope brings to mea-
surements that have the tendency to drift because of the
integration error over time. The best solution to these weak-
nesses consists in the combination of both accelerometer and
gyroscope data by means of a filter. Most of research works
focus on the use of the Kalman filter [35], that is a recoursive
filter keeping track of the estimated state of a system and of
the variance or uncertainty of the estimate, as well. However,
the Kalman filter requires significant hardware resources
to be used and this is a strong limitation for the proposed
application in which the system has to be responsive and the
minimal computational effort is needed. In order to obtain
the orientation, in terms of Euler angles, a complementary
filter [36], [37], [38] has been implemented since it is com-
putationally more efficient (also for real time applications)
with respect to the Kalman filter [39], and it is not susceptible
to small disturbing forces, to external forces, and it does not
drift.

Formally, the time derivative of the Euler attitude ω̇ can
be expressed in terms of the gyroscope measures (p, q, r) by
(5), where the angles of pitch, roll and yaw are denoted as α,
β, and γ respectively, and the subscript g refers to the fact
that the angular variations are estimated from the gyroscope
measures.

ω̇ =

 α̇g
β̇g
γ̇g

 =

 1 sinα tanβ cosα tanβ
0 cosα − sinα
0 sinα/ cosβ cosα/ cosβ

  p
q
r

 (5)

Moreover, the roll α and the pitch β can be obtained from
the accelerometer measures (ax , ay, az) by (6) and (7), where
the subscript a indicates that the accelerometer is used.

αa = tan−1(ay/az) (6)

βa = tan−1(ax/
√
a2y + a2z ) (7)

FIGURE 7. Block diagram of the complementary filter.

Finally, the yaw γ can be evaluated from themagnetometer
measures (mx , my, mz) by (8), in which the subscript m refers
to the the use of the magnetometer.

γm = tan−1
(

mz sinα − my cosα
mx cosβ + my sinα sinβ + mz sinβ cosα

)
(8)

The basic structure of the complementary filter is given by
the block diagram in Fig. 7 that accepts the time derivative
of the Euler attitude and the preliminar estimations of roll,
pith and yaw as inputs to return the Euler angles α, β and
γ . As shown in Fig. 7, the inputs are filtered by high pass
filter (HPF) and low pass filter (LPF) correspondingly, and
the outputs are weighted through a weighting factor ξϵ [0,1].

These filters have specific transfer function GHPF(s) and
GLPF(s) in Laplace domain, such that GHPF(s)·GLPF(s) =

1 [39]; for instance, GHPF(s) = τ s/(1+τ s) and GLPF(s) =

1/(1+τ s) can be chosen for a fixed cut-off frequency 1/τ .
The weighted sum of the filter outputs gives the expected

triplet of angles α, β and γ . The Euler angles describe the
absolute orientation with respect to a fixed coordinate system
of the object where the IMU is placed on. In order to get the
target direction (θ , φ), the Euler angles have to be given as
inputs to an analytic geometry model. With respect to the
fixed reference system depicted in Fig. 6, the roll α represents
the rotation around the x axis, the pitch β represents the
rotation around the y axis and, finally, the yaw γ represents
the rotation around the z axis. Any orientation can be achieved
by composing three elemental rotations around the axes z,
y and x (in that order), starting from a known standard ori-
entation. These rotations bring to a composed rotation that
can be described by the rotation matrix R in (9), where for
a generic angle u, su = sin(u) and cu = cos(u) are used for
compacteness.

R =

 cβcγ −cβsγ sβ
cαsγ + cγ sαsβ cαcγ − sαsβsγ −cβsα
sαsγ − cαcγ sβ cγ sα + cαsβsγ cαcβ

 (9)

In this way, a generic direction defined by the vector n in
the fixed reference system can be mapped to a new rotated
direction nrot = R · n through the procedure illustrated in
Fig. 6. Lastly, the zenith angle θ and the azimuthal angle φ
can be calculated according to the longitude and colatitude
formulas in (10) and (11), where nrot,x , nrot,y, nrot,z are the
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components of nrot along the axes x, y and z respectively.

θ = a cos(nrot,z) (10)

φ = tan−1(nrot,y/nrot,x) (11)

After dermining the target direction (θ , φ), the previously
trained neural network can be used to extract the concerning
phase shift matrix 8. A topic of particular interest consists
in the possibility of using the proposed neural network as
a fitting function rather than simple classifier. Indeed, once
the implemented neural network has learnt from the training
data, it forms a generalization of the input-output relationship
and can be used to generate outputs for inputs that it was not
trained on. In other words, the input point (θ , φ) in the block
scheme of Fig. 5, and also reported in Fig. 6, could not belong
to the training dataset arranged to train the network. Anyway,
the neural network is able to assign to the not-previously
observed point the concerning class label, and ultimately the
related phase shift matrix, with the minimum fitting error.

III. RESULTS
In this Section the method to inertially control the radiation
pattern of two-dimentional antenna arrays by using a feed-
forward neural network has been implemented to test and
validate the performance in two specific reference use cases.

As a first use case, a 2.4 GHz 4× 4 antenna array has been
designed by usingMatlab Antenna Toolbox. The parameter d
of Fig. 1, namely the distance between two contiguous radi-
ating elementes, has been set to λ/2, i.e. d = 62.5 mm. Each
radiating element is fed by a signal with unitary amplitude
and variable phase, according to the corresponding element
of the computed phase shift matrix. The feeding signal can
be written in matrix form as reported in (12):

S̄ = Ā ∗ ei8̄c , (12)

where S̄ is the 4× 4 feeding matrix, Ā is the 4× 4 amplitude
matrix (having the value ‘‘1’’ in all positions in this case), and
8̄c is the computed 4 × 4 phase shift matrix.

To control the antenna array, the feed-forward neural net-
work has been implemented in Matlab, and the procedure of
Fig. 5 has been properly executed. Level curves at -3 dB have
been purposely selected in the specific test case. Therefore,
the AFnorm has been computed and 81 regions (i.e. classes) at
-3 dB have been determined for the specific case, as shown
in Fig. 8, where the regions are represented on a θφ plane.
According to the procedure, a specific dataset of random
points (θi, φi) has been then generated to perform the training
of the neural network. Based on the proposed theory, each
point has been classified, associated to a region subtended
by a specific level curve, and properly labeled to address
the specific phase shift matrix corresponding to the desired
AFnorm orientation.

With this general setup, different tests have been imple-
mented to evaluate the performance of the designed system
in terms of percentage of detection of the correct phase shift
matrix, given a certain input point. Tests have been performed
by varying:

FIGURE 8. Regions subtended by -3dB level curves computed for the
radiation pattern of a 4 × 4 antenna array on the θ-φ plane.

FIGURE 9. Example of a 10,000-point dataset with 60% of training points,
and 40% of (unknown) test points referred to a neural network with
60 hidden neurons controlling a 4 × 4 phased array.

1. number of neurons of the hidden layer,
2. maximum number of training points within the interval

[1,000-10,000],
3. number and typology of points used to perform the test

of the neural network. More specifically, the neural net-
work has been tested by exploiting a certain percentage of
‘‘known’’ or ‘‘unknown’’ points. Known points are points
of the dataset that the neural network already observed
during the training phase. Conversely, unknown points are
points of the dataset never observed by the neural network.

The example of Fig. 9 shows a graphical representation on
the θφ plane of a 10,000-point dataset with 60% of training
points, and 40% of unknown test points referred to the neural
network with 60 neurons in the hidden layer.

As for the obtained neural network performance evalua-
tion, Fig. 10 shows three different graphs related to 60 a),
80 b), and 100 c) hidden neurons, respectively. Graphs show
the percentage of detection of the correct phase shift matrix
when varying cardinality of the dataset in the given interval.
For each dataset, continuous lines are referred to unknown
test points, and dashed lines are referred to known points.
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FIGURE 10. Percentage of correct detection referred to the neural
network a controlling a 4 × 4 phased array: 60 hidden neurons a); 80
hidden neurons b); 100 hidden neurons c).

Let us consider the graph of Fig. 10a, which is referred
to a number of hidden neurons (80) comparable with the
number of classes (81), according to various criteria adopted
to avoid both overfitting or underfitting problems [40]. First,
as expected, curves referred to a certain percentage of known
test points concern with higher accuracy than the companion
versions referred to the same percentage of unknown test

FIGURE 11. Percentage of correct detection referred to the neural
network with 100 hidden neurons a controlling a 6 × 6 phased array.

points. Nevertheless, it is important to observe that, while
increasing the dataset points, such a difference becomes
particularly reduced, thus demonstrating that regardless the
status of the points (known or unknown) an appreciable
percentage of correct detection, between 87% and 93%,
is achieved. Another important deduction is that while vary-
ing the dataset points all the graphs show an initial growing
trendwhich converges toward an asymptotic value. In the spe-
cific case, the smallest cardinality of the dataset guaranteeing
a stable percentage is roughly 6,000 points. This value sets the
smaller number of dataset points to train the neural network,
since a higher number of points would only impact on the
computational time. Finally, the comparison among curves
obtained when increasing the percentage of training points
with respect to the test points, is rather relevant. Indeed, what
it is necessary is that the neural network does not depend
on the number of test points. Hence, even if apparently the
curve obtained with 90% of training points becomes stable at
around 4,000 points instead of 6,000 (when 60% of training
points is used), the significant gap among all the curves
suggests that the highest value should be considered.

For the sake of completeness, the same test has been carried
out also with a number of hidden neurons equal to 60 (smaller
that the number of classes) and 100 (higher than the number
of classes), and results reported in Fig. 10b and Fig 10c,
respectively.

The sole slightly appreciable difference is referred to the
rapidity of convergence of the curve with 60% of training
points. No evident effects are observed neither on the percent-
age of correct detection in the steady state, nor in the number
of points individuating such a steady state.

Consequently, the choose of the number of hidden neurons
can be made by considering other parameters such as, for
instance, the computational time, which has been properly
evaluated in the three addressed cases. More specifically,
Matlab tests have been performed on an off-the-shelf work-
station powered by an Intel Core I7 10th generation pro-
cessor, and mounting 16 GB of RAM. The average time to
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FIGURE 12. Computed normalized radiation pattern of a 4 × 4 phased array for three input angles and corresponding computed phase matrices.

compute a phase shift matrix (i.e. the time necessary to switch
from one radiation pattern to another) resulted in t60,4×4 =

5.6 ms, t80,4×4 = 5.9 ms, t100,4×4 = 7.8 ms, for 60, 80, and
100 hidden neurons, respectively. This suggests that the use
of 60 hidden neurons is the preferrable solution to control the
4 × 4 phased array.

The same kind of result has been obtained for a more
complex array composed of 6 × 6 elements. In this case the
number of classes is 120. The test has been carried out for
100, 120, and 150 hidden neurons, respectively. Since the
results are similar, for the sake of conciseness only the case
of 100 is reported in Fig. 11. It emerges that the steady state
is reached with a number of dataset points slightly higher
than the 4 × 4 case (around 7,000). The computational time
resulted in t100,6×6 = 9.1 ms.

This demonstrates how, thanks to a neural network, there is
a relevant reduction of the computational time required to get
the result. Indeed, in the proposed approach, neural networks
are used because of their suitability to build models without
resorting to complicated mathematical formulas. This allows
not only to solve complex problems by simulating the basic
functions of biological neurons, but also (and above all) to
return the problem solution in an reasinable time. Several
factors impact on the net complexity, such as the network
structure and the number of hidden neurons [40]. The used
feed-forward scheme appears to be the best way to keep the
computation time low, avoiding cycles or loops when the
information moves from the input to the output layer.

Once reasonable numbers of hidden neurons and dataset
points have been individuated, the neural network for the
4 × 4 case (without loss of generality) has been used to
steer the beam of the radiation pattern toward pre-defined
angles. In particular, the goal is to demonstrate that the

FIGURE 13. Setup of the MAX78000 AI-based microcontroller interfaced
with the CC1352R BLE microcontroller and the BMX160 IMU board to
drive an external 4 × 4 phased array.

neural network correctly selects the proper phase shift matrix
when an arbitrary couple (θ, φ) is given in input. For the
sake of conciseness and graphical representability, only three
cases — and all referred to φ = 0 — have been reported
in Fig.12, along with the classified matrices. Fig. 12a, for
instance, is refereed to θ = 12.7◦. It can be observed that,
with reference to the selected phase shift matrix, the chosen
angle falls in the highlighted -3dB beamwidth, as desired.

In Figg. 12b and 12c the results referred to two other
randomly chosen angles, i.e. θ = 25.0◦ and θ = 53.3◦,
respectively, are reported. It can be clearly observed that
the trained neural network performs beam steering accord-
ing to the desired direction, while guaranteeing the already
discussed computational performance.

In the final test, the capability of the designed system of
correctly steering the radiation pattern according to real time
data coming from an IMU board has been verified using the
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FIGURE 14. Calculated radiation patterns according to drone orientation.

setup of Fig. 13. The systems is based on the MAX78000 a
new kind of Artificial Intelligence microcontrollers embed-
ding and ultra-low-power neural network accelerator [41].
The MAX78000 has been programmed to run an artificial
neural network trained to drive a 4 × 4 two-dimensional
phased array according to the proposedmethodology. In order
to perform the transmission of the computed angular data
(toward an host-pc for data visualization) the MAX78000 has
been interfaced, via i2c interface with a CC1352R-LPSTK
Bluetooth low Energy (BLE) wireless microcontroller board
acting as a primary device [42]. This last has been then con-
nected via i2c to the 16-bit BMX160 IMU unit [43] integrat-
ing accelerometer, magnetometer, and gyroscope. The BLE
master microcontroller performs sensing and data fusion and
generates triplets of Euler angles α, β and γ that send to the
MAX78000 for neural network processing. The MAX78000
sends back the result that is finally transmitted toward the
host-pc, for array feed and data visualization underMATLAB
environment. Specifically, in the studied test case, the IMU
board is considered integral with the array (which is imple-
mented in a virtual environment in this test, without loss of
generality) and with an object capable of moving, such as a
flying drone.

In the proposed test-case the ground has been chosen as
the target direction of the antenna beam. Then, the system has
been configured to maximize the radiating power toward the
ground and to recompute the pointing direction accordingly,
regardless the actual drone orientation during its activity.

In Fig 14, the results obtained for some of the many inves-
tigated angles of the drone—and hence IMU and array— are
reported. All the rotation angles are computed with respect
to the reference system (xg,yg,zg), where the plane (xg,yg)
corresponds to the ground. The reference system for the
radiation pattern is, as usual, those of Fig. 1, where the
broadside direction of the 4×4 array is aligned with the front
direction of the drone.

The reported studied cases correspond to triplet of Euler
angles (representative of drone orientations) which, once
processed, generate the couples (θ = 63◦,φ = 104◦), (θ =

51◦,φ = 182◦), and (θ=47◦,φ = 227◦), respectively. As can
be observed, regardless the angles, the algorithm selects the

correct phase shift matrix which guarantees the desired ori-
entation of the beam of the radiation pattern. More specifi-
cally, this use case demonstrates the capability of the whole
designed system of opportunely compensating —within the
imposed −3dB tolerance and in real time (switching time of
5.6 ms)— the arbitrary angles of the drone.’’

IV. CONCLUSION
The use of artificial intelligence (AI) algorithms in the elec-
tromagnetic field promises interesting advances in various
application contexts, such as the design of intelligent electro-
magnetic environments rather than the development of opti-
mizers as part of electromagnetic simulators. The design of
an AI-based system for the rapid and smart orientation of the
beam of a phased array according to a given event, such as for
instance the real-time data coming from an IMU, is another
promising area of interest which is proposed in this work.
The main issue from the analytical point of view consists of
inverting the Array Factor (AF) function to evaluate the phase
shift matrix associated to a desired orientation of the beam.
Indeed, a closed-form solution for such a problem is not pos-
sible. To overcome this limit, a feed-forward neural network
acting on specific and discretized cross-section regions of
the AF main lobe has been implemented and opportunely
trained to individuate the proper phase shift matrix guarantee-
ing the desired radiation pattern of two-dimensional phased
arrays.

To drive the neural network, inertial sensor data are fused
and processed through both a complementary filter and
an analytic geometrical model so to provide proper angles
according to a certain user-defined control logic.

The whole system has been tested on 4×4 and 6×6 arrays,
in terms of computational performance, pointing resolution,
and global functioning in a realistic use case.

The obtained real-time responses of a few milliseconds,
together with the capability of correctly steering the beam,
are the main features of the proposed method. Several
practical applications could benefit from the possibility of
real-time controlling a radiation pattern by exploiting the
quick response of a feed-forward neural network.
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