234 research outputs found

    ENDOTHELIAL SIRT6 BLUNTS STROKE SIZE AND NEUROLOGICAL DEFICIT BY PRESERVING BLOOD-BRAIN BARRIER INTEGRITY: A TRANSLATIONAL STUDY

    Get PDF
    Aims: Aging is an established risk factor for stroke; genes regulating longevity are implicated in the pathogenesis of ischaemic stroke where to date, therapeutic options remain limited. The blood-brain barrier (BBB) is crucially involved in ischaemia/reperfusion (I/R) brain injury thus representing an attractive target for developing novel therapeutic agents. Given the role of endothelial cells in the BBB, we hypothesized that the endothelial-specific expression of the recently described longevity gene SIRT6 may exhibit protective properties in stroke. Methods and results: SIRT6 endothelial expression was reduced following stroke. Endothelial-specific Sirt6 knockout (eSirt6-/-) mice, as well as animals in which Sirt6 overexpression was post-ischaemically induced, underwent transient middle cerebral artery occlusion (tMCAO). eSirt6-/- animals displayed increased infarct volumes, mortality, and neurological deficit after tMCAO, as compared to control littermates. Conversely, post-ischaemic Sirt6 overexpression decreased infarct size and neurological deficit. Analysis of ischaemic brain sections revealed increased BBB damage and endothelial expression of cleaved caspase-3 in eSIRT6-/- mice as compared to controls. In primary human brain microvascular endothelial cells (HBMVECs), hypoxia/reoxygenation (H/R) reduced SIRT6 expression and SIRT6 silencing impaired the barrier function (transendothelial resistance) similar to what was observed in mice exposed to I/R. Further, SIRT6-silenced HBMVECs exposed to H/R showed reduced viability, increased cleaved caspase-3 expression and reduced activation of the survival pathway Akt. In ischaemic stroke patients, SIRT6 expression was higher in those with short-term neurological improvement as assessed by NIHSS scale and correlated with stroke outcome. Conclusion: Endothelial SIRT6 exerts a protective role in ischaemic stroke by blunting I/R-mediated BBB damage and thus, it may represent an interesting novel therapeutic target to be explored in future clinical investigation

    Low-grade endotoxaemia and platelets : A deadly aggregation

    Get PDF
    This article has been accepted for publication in European Heart Journal. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author(s) 2020.Peer reviewe

    T-cells in myocardial infarction: Culprit instigators or mere effectors?

    Get PDF
    Immune system activation and dysfunction characterize the early phase of reperfusion after a myocardial infarction (MI). Despite initially neglected, adaptive immunity has been recently showed to play an important role in this setting. In fact, the immune system can recognize sequestered antigens released by the necrotic tissue, initiating a deleterious autoimmune vicious circle leading to worse outcome. In their recent work, Angelini et al shed the light on a new feature of post-MI which involves two "old players" of post-ischemic myocardial injury: CD31 and matrix metalloproteinase (MMP)-9. Specifically, the authors showed that an enhancement of MMP-9 release could determine the cleavage of inhibitory CD31 from CD4+ T-cells surface in patients with Acute Coronary Syndromes (ACS). These findings open the room for new studies investigating the role of MMP9 in other pathological processes associated with a reduction of CD31 functionality, such as plaque instability and rupture. Of interest, in the case of a causative role for CD31 shedding in ACS would be confirmed, there might be a potential role for the administration of CD31 protein or analogue compounds to blunt post-ischemic cardiac inflammation and improve ACS outcome

    Inflammation and cardiovascular diseases: lessons from seminal clinical trials.

    Get PDF
    Abstract Inflammation has been long regarded as a key contributor to atherosclerosis. Inflammatory cells and soluble mediators play critical roles throughout arterial plaque development and accordingly, targeting inflammatory pathways effectively reduces atherosclerotic burden in animal models of cardiovascular (CV) diseases. Yet, clinical translation often led to inconclusive or even contradictory results. The Canakinumab Anti-inflammatory Thrombosis Outcome Study (CANTOS) followed by the Colchicine Cardiovascular Outcomes Trial (COLCOT) were the first two randomized clinical trials to convincingly demonstrate the effectiveness of specific anti-inflammatory treatments in the field of CV prevention, while other phase III trials—including the Cardiovascular Inflammation Reduction Trial one using methotrexate—were futile. This manuscript reviews the main characteristics and findings of recent anti-inflammatory Phase III trials in cardiology and discusses their similarities and differences in order to get further insights into the contribution of specific inflammatory pathways on CV outcomes. CANTOS and COLCOT demonstrated efficacy of two anti-inflammatory drugs (canakinumab and colchicine, respectively) in the secondary prevention of major adverse CV events (MACE) thus providing the first confirmation of the involvement of a specific inflammatory pathway in human atherosclerotic CV disease (ASCVD). Also, they highlighted the NOD-, LRR-, and pyrin domain-containing protein 3 inflammasome-related pathway as an effective therapeutic target to blunt ASCVD. In contrast, other trials interfering with a number of inflammasome-independent pathways failed to provide benefit. Lastly, all anti-inflammatory trials underscored the importance of balancing the risk of impaired host defence with an increase in infections and the prevention of MACE in CV patients with residual inflammatory risk

    Cytokines as therapeutic targets for cardio- and cerebrovascular diseases

    Full text link
    Despite major advances in prevention and treatment, cardiac and cerebral atherothrombotic complications still account for substantial morbidity and mortality worldwide. In this context, inflammation is involved in the chronic process leading atherosclerotic plaque formation and its complications, as well as in the maladaptive response to acute ischemic events. For this reason, modulation of inflammation is nowadays seen as a promising therapeutic strategy to counteract the burden of cardio- and cerebrovascular disease. Being produced and recognized by both inflammatory and vascular cells, the complex network of cytokines holds key functions in the crosstalk of these two systems and orchestrates the progression of atherothrombosis. By binding to membrane receptors, these soluble mediators trigger specific intracellular signaling pathways eventually leading to the activation of transcription factors and a deep modulation of cell function. Both stimulatory and inhibitory cytokines have been described and progressively reported as markers of disease or interesting therapeutic targets in the cardiovascular field. Nevertheless, cytokine inhibition is burdened by harmful side effects that will most likely prevent its chronic use in favor of acute administrations in well-selected subjects at high risk. Here, we summarize the current state of knowledge regarding the modulatory role of cytokines on atherosclerosis, myocardial infarction, and stroke. Then, we discuss evidence from clinical trials specifically targeting cytokines and the potential implication of these advances into daily clinical practice

    Septic cardiomyopathy: From pathophysiology to the clinical setting

    Get PDF
    The onset of cardiomyopathy is a common feature in sepsis, with relevant effects on its pathophysiology and clinical care. Septic cardiomyopathy is characterized by reduced left ventricular (LV) contractility eventually associated with LV dilatation with or without right ventricle failure. Unfortunately, such a wide range of ultrasonographic findings does not reflect a deep comprehension of sepsis-induced cardiomyopathy, but rather a lack of consensus about its definition. Several echocardiographic parameters intrinsically depend on loading conditions (both preload and afterload) so that it may be challenging to discriminate which is primitive and which is induced by hemodynamic perturbances. Here, we explore the state of the art in sepsis-related cardiomyopathy. We focus on the shortcomings in its definition and point out how cardiac performance dynamically changes in response to different hemodynamic clusters. A special attention is also given to update the knowledge about molecular mechanisms leading to myocardial dysfunction and that recall those of myocardial hibernation. Ultimately, the aim of this review is to highlight the unsolved issue in the field of sepsis-induced cardiomyopathy as their implementation would lead to improve risk stratification and clinical care

    Anemia Due to Inflammation in an Anti-Coagulated Patient with Blue Rubber Bleb Nevus Syndrome

    Get PDF
    Background: Blue rubber bleb nevus syndrome (BRBNS) is a rare disease characterized by vascular malformations mostly involving skin and gastrointestinal tract. This disease is often associated with sideropenic anemia and occult bleeding. Methods: We report the case of chronic severe anemia in an old patient under oral anticoagulation treatment for chronic atrial fibrillation. Results: At admission, the patient also presented fever and increased laboratory parameters of systemic inflammation (ferritin 308 mcg/L, C-reactive protein (CRP) 244 mg/L). A small bluish-colored lesion over the left ear lobe was observed. Fecal occult blood test was negative as well as other signs of active bleeding. Lower gastrointestinal endoscopy revealed internal hemorrhoids and multiple teleangiectasias that were treated with argon plasma coagulation. Videocapsule endoscopy demonstrated multiple bluish nodular lesions in the small intestine. Unexpectedly, chronic severe anemia due to systemic inflammation was diagnosed in an old anticoagulated patient with BRNBS. The patient was treated with blood transfusions, hydration, antibiotic treatment, and long-acting octreotide acetate, without stopping warfarin. Fever and inflammation disappeared without any acute gastrointestinal bleeding and improvement of hemoglobin levels at three-month follow up. Conclusions: This is the oldest patient presenting with chronic anemia, in which BRNBS was also diagnosed. Surprisingly, anemia was mainly caused by systemic inflammation instead of chronic gastrointestinal bleeding. However, we would recommend investigating this disease also in old subjects with mild signs and symptoms

    Modern Concepts in Cardiovascular Disease: Inflamm-Aging

    Full text link
    The improvements in healthcare services and quality of life result in a longer life expectancy and a higher number of aged individuals, who are inevitably affected by age-associated cardiovascular (CV) diseases. This challenging demographic shift calls for a greater effort to unravel the molecular mechanisms underlying age-related CV diseases to identify new therapeutic targets to cope with the ongoing aging "pandemic". Essential for protection against external pathogens and intrinsic degenerative processes, the inflammatory response becomes dysregulated with aging, leading to a persistent state of low-grade inflammation known as inflamm-aging. Of interest, inflammation has been recently recognized as a key factor in the pathogenesis of CV diseases, suggesting inflamm-aging as a possible driver of age-related CV afflictions and a plausible therapeutic target in this context. This review discusses the molecular pathways underlying inflamm-aging and their involvement in CV disease. Moreover, the potential of several anti-inflammatory approaches in this context is also reviewed

    Terahertz dipole nanoantenna arrays: resonance characteristics

    Get PDF
    Resonant dipole nanoantennas promise to considerably improve the capabilities of terahertz spectroscopy, offering the possibility of increasing its sensitivity through local field enhancement, while in principle allowing unprecedented spatial resolutions, well below the diffraction limit. Here, we investigate the resonance properties of ordered arrays of terahertz dipole nanoantennas, both experimentally and through numerical simulations. We demonstrate the tunability of this type of structures, in a range (∼1–2 THz) that is particularly interesting and accessible by means of standard zinc telluride sources. We additionally study the near-field resonance properties of the arrays, finding that the resonance shift observed between near-field and far-field spectra is predominantly ascribable to ohmic damping
    corecore