37 research outputs found

    The use of equine chondrogenic‐induced mesenchymal stem cells as a treatment for osteoarthritis : a randomised, double‐blinded, placebo‐controlled proof‐of‐concept study

    Get PDF
    Background: There is a need to improve therapies for osteoarthritis in horses. Objectives To assess the efficacy of equine allogeneic chondrogenic-induced mesenchymal stem cells combined with equine allogeneic plasma as a novel therapy for osteoarthritis in horses. Study design: Randomised, double-blinded, placebo-controlled experiment. Methods: In 12 healthy horses, osteoarthritis was induced in the metacarpophalangeal joint using an osteochondral fragment-groove model. Five weeks after surgery, horses were randomly assigned to either an intra-articular injection with chondrogenic-induced mesenchymal stem cells + equine allogeneic plasma (= intervention) or with 0.9% saline solution (= control). From surgery until the study end, horses underwent a weekly joint and lameness assessment. Synovial fluid was collected for cytology and biomarker analysis before surgery and at Weeks 5, 5 + 1d, 7, 9 and 11. At Week 11, horses were subjected to euthanasia, and the metacarpophalangeal joints were evaluated macroscopically and histologically. Results: No serious adverse events or suspected adverse drug reactions occurred during the study. A significant improvement in visual and objective lameness was seen with the intervention compared with the control. Synovial fluid displayed a significantly higher viscosity and a significantly lower glycosaminoglycan concentration in the intervention group. Other biomarkers or cytology parameters were not significantly different between the treatment groups. Significantly less wear lines and synovial hyperaemia were present in the intervention group. The amount of cartilage oligomeric matrix protein, collagen type II and glycosaminoglycans were significantly higher in the articular cartilage of the intervention group. Main limitations: This study assessed the short-term effect of the intervention on a limited number of horses, using an osteoarthritis model. This study also included multiple statistical tests, increasing the risk of type 1 error. Conclusions: Equine allogeneic chondrogenic-induced mesenchymal stem cells combined with equine allogeneic plasma may be a promising treatment for osteoarthritis in horses

    Regenerative skin wound healing in mammals : state-of-the-art on growth factor and stem cell based treatments

    Get PDF
    Mammal skin has a crucial function in several life-preserving processes such as hydration, protection against chemicals and pathogens, initialization of vitamin D synthesis, excretion and heat regulation. Severe damage of the skin may therefore be life-threatening. Skin wound repair is a multiphased, yet well-orchestrated process including the interaction of various cell types, growth factors and cytokines aiming at closure of the skin and preferably resulting in tissue repair. Regardless various therapeutic modalities targeting at enhancing wound healing, the development of novel approaches for this pathology remains a clinical challenge. The time-consuming conservative wound management is mainly restricted to wound repair rather than restitution of the tissue integrity (the so-called “restitutio ad integrum”). Therefore, there is a continued search towards more efficacious wound therapies to reduce health care burden, provide patients with long-term relief and ultimately scarless wound healing. Recent in vivo and in vitro studies on the use of skin wound regenerative therapies provide encouraging results, but more protracted studies will have to determine whether the effect of observed effects are clinically significant and whether regeneration rather than repair can be achieved. For all the aforementioned reasons, this article reviews the emerging field of regenerative skin wound healing in mammals with particular emphasis on growth factor- and stem cell-based therapies

    Safety and immunomodulatory properties of equine peripheral blood-derived mesenchymal stem cells in healthy cats

    Get PDF
    Objective: Due to the immunomodulatory properties of mesenchymal stem cells (MSCs) through stimulation of endogenous immune cells by paracrine signals and cell contact, they have been proposed as alternative treatment option for many inflammatory and immune-mediated diseases in veterinary medicine. However, the long-term cultivation possibilities of feline MSCs are currently compromised due to a restricted proliferation capacity. Therefore, the xenogeneic use of equine peripheral blood-derived MSCs (ePB-MSCs) would present an interesting alternative thanks to their superior cultivation properties. To the authors' knowledge, there are currently no safety reports concerning the xenogeneic use of ePB-MSCs in cats. Therefore, the overall goal of this preliminary study was to investigate if ePB-MSCs can safely be administered in healthy cats and by extension evaluating their immunogenic and immunomodulatory properties. Methods: Ten healthy cats were intravenously (i.v.) injected with 3 x 10(5) ePB-MSCs at three time points (T-0, T-1, T-2). All cats were daily inspected by the caretaker and underwent a physical examination with hematological and biochemical analysis at day 0 (T-0), week 2 (T-1), week 4 (T-2) and week 6 (T-3) by a veterinarian. Furthermore, a modified mixed lymphocyte reaction (MLR) was performed at T-0 and T-3 for each cat in order to evaluate immunogenic and immunomodulatory properties of the ePB-MSCs Results: No adverse clinical effects could be detected following repeated i.v. administration of ePB-MSCs in all cats. Significant lower protein (T-1: P-value = 0.002; T-2: P-value > 0.001; T-3: P-value = 0.004) and albumin levels (T-1: P-value = 0.003; T-2: P-value = 0.001) were seen after repeated administration of ePB-MSCs, compared to T-0. However, all biochemical and hematological parameters stayed within clinical acceptance level. In addition, the repeated injections did not induce a cellular immune response before and after repeated ePB-MSCs administration. Furthermore, convincing immunomodulatory properties of ePB-MSCs on feline peripheral blood mononuclear cells were confirmed in the MLR-assay Conclusion: This preliminary study demonstrates that ePB-MSCs can safely be administered in healthy cats and provide a promising alternative for the treatment of various inflammatory diseases in cats

    Chondrogenic priming at reduced cell density enhances cartilage adhesion of equine allogeneic MSCs : a loading sensitive phenomenon in an organ culture study with 180 explants

    Get PDF
    Background: Clinical results of regenerative treatments for osteoarthritis are becoming increasingly significant. However, several questions remain unanswered concerning mesenchymal stem cell (MSC) adhesion and incorporation into cartilage. Methods: To this end, peripheral blood (PB) MSCs were chondrogenically induced and/or stimulated with pulsed electromagnetic fields (PEMFs) for a brief period of time just sufficient to prime differentiation. In an organ culture study, PKH26 labelled MSCs were added at two different cell densities (0.5 x10(6) vs 1.0 x10(6)). In total, 180 explants of six horses (30 per horse) were divided into five groups: no lesion (i), lesion alone (ii), lesion with naive MSCs (iii), lesion with chondrogenically-induced MSCs (iv) and lesion with chondrogenically-induced and PEMF-stimulated MSCs (v). Half of the explants were mechanically loaded and compared with the unloaded equivalents. Within each circumstance, six explants were histologically evaluated at different time points (day 1, 5 and 14). Results: COMP expression was selectively increased by chondrogenic induction (p = 0.0488). PEMF stimulation (1mT for 10 minutes) further augmented COL II expression over induced values (p = 0.0405). On the other hand, MSC markers remained constant over time after induction, indicating a largely predifferentiated state. In the unloaded group, MSCs adhered to the surface in 92.6% of the explants and penetrated into 40.7% of the lesions. On the other hand, physiological loading significantly reduced surface adherence (1.9%) and lesion filling (3.7%) in all the different conditions (p < 0.0001). Remarkably, homogenous cell distribution was characteristic for chondrogenic induced MSCs (+/- PEMFs), whereas clump formation occurred in 39% of uninduced MSC treated cartilage explants. Finally, unloaded explants seeded with a moderately low density of MSCs exhibited greater lesion filling (p = 0.0022) and surface adherence (p = 0.0161) than explants seeded with higher densities of MSCs. In all cases, the overall amount of lesion filling decreased from day 5 to 14 (p = 0.0156). Conclusion: The present study demonstrates that primed chondrogenic induction of MSCs at a lower cell density without loading results in significantly enhanced and homogenous MSC adhesion and incorporation into equine cartilage. Copyright (C) 2015 S. Karger AG, Base

    Study protocol of KLIMOP: a cohort study on the wellbeing of older cancer patients in Belgium and the Netherlands

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cancer is mainly a disease of older patients. In older cancer patients, additional endpoints such as quality of survival and daily functioning might be considered equally relevant as overall or disease free survival. However, these factors have been understudied using prospective designs focussing on older cancer patients. Therefore, this study will focus on the impact of cancer, ageing, and their interaction on the long-term wellbeing of older cancer patients.</p> <p>Methods/Design</p> <p>This study is an observational cohort study. We aim to recruit 720 cancer patients above 70 years with a new diagnosis of breast, prostate, lung or gastrointestinal cancer and two control groups: one control group of 720 patients above 70 years without a previous diagnosis of cancer and one control group of 720 cancer patients between 50 - 69 years newly diagnosed with breast, prostate, lung or gastrointestinal cancer. Data collection will take place at inclusion, after six months, after one year and every subsequent year until death or end of the study. Data will be collected through personal interviews (consisting of socio-demographic information, general health information, a comprehensive geriatric assessment, quality of life, health locus of control and a loneliness scale), a handgrip test, assessment of medical records, two buccal swabs and a blood sample from cancer patients (at baseline). As an annex study, caregivers of the participants will be recruited as well. Data collection for caregivers will consist of a self-administered questionnaire examining depression, coping, and burden.</p> <p>Discussion</p> <p>This extensive data collection will increase insight on how wellbeing of older cancer patients is affected by cancer (diagnosis and treatment), ageing, and their interaction. Results may provide new insights, which might contribute to the improvement of care for older cancer patients.</p

    Correlation between dichromatic colour vision and jumping performance in horses

    Get PDF
    There is general agreement that horses have dichromatic colour vision with similar capabilities to human beings with red-green colour deficiencies. However, whether colour perception has an impact on equine jumping performance and how pronounced the colour stimulus might be for a horse is unknown. The present study investigated the relationship between the colour of the fences (blue or green) and the show jumping performance of 20 horses ridden by two riders using an indoor and outdoor set of green and blue fences. In the indoor arena, significantly more touches and faults were made on blue fences in comparison to green fences (median difference of 2.5 bars). When only touched bars were included, a significant median difference of one bar was found. Mares (n = 4) demonstrated more faults and had a significantly greater difference in touches and faults between the two colours than male horses (n = 16). Repeating the same experiment with eight horses in an outdoor grass arena revealed no significant differences between the two colours. In order to draw any definite conclusions, more research concerning the colour perception, influence of contrast with the arena surface and sex of horse is required.status: publishe

    Intravenous application of allogenic peripheral blood-derived mesenchymal stem cells : a safety assessment in 291 equine recipients

    No full text
    It has been reported that mesenchymal stem cells (MSCs) have homing capacities and immunomodulating effects after an intravenous injection. However, transplanting MSCs in murine tail veins can result in pulmonary reactions and even death of the animals. Unfortunately, only a few intravenous MSC transplantations have been reported in large animal species and these were performed in a limited number of individuals. To assess the safety of MSC transplantations, a large study on 291 recipient horses is reported here. MSCs were isolated from the peripheral blood (PB) of a 4-year-old and 6-year-old donor horse after having tested their PB for a wide range of transmittable diseases. The MSC samples from both donor horses were characterized and resuspended in 1ml of Dulbecco's Modified Eagle Medium (DMEM) supplemented with 10% Dimethyl Sulfoxide (DMSO). After hand-thawing in the field, 291 horses with ages ranging from 3-months to 33-years were directly injected into their jugular vein. 281 horses (97%) received a single injection of a physiological dose of 0.2 x 10(6) MSCs, 5 horses (1.7%) were re-injected after approximately 6 weeks (using the same dose and donor cells) and a single superphysiological dose of 10(6) MSCs was administered to 5 horses as well. In total, 176 recipients were injected with MSCs from the 4-year-old donor and 115 recipients received MSCs from the 6-year-old donor. From all the injected horses (n=291) no acute clinical adverse effects were noticed. Apart from one horse that died of colic 7 months after the treatment, no deaths were registered and all the horses were monitored for 1 year after the injection. In conclusion, no adverse effects were noticed in 291 recipients after an intravenous injection of allogenic PB-derived MSCs. Nevertheless, further research is warranted in order to verify the immunogenic properties of these cells after allogenic transplantation into various (patho)physiological sites

    Allogenic mesenchymal stem cells as a treatment for equine degenerative joint disease : a pilot study

    No full text
    Cell-based therapies, such as treatments with mesenchymal stem cells (MSCs) and platelet-rich plasma (PRP) are thought to have beneficial effects on the clinical outcome of orthopedic injuries, but very few animal studies with large sample size are published so far. Therefore, the aim of this study was to assess the safety and report the clinical outcome of allogenic, immature or chondrogenic induced MSCs in combination with PRP for the treatment of degenerative joint disease (DJD) in 165 horses. MSCs and PRP were isolated from a 6-year-old donor horse and transplanted either in their native state or after chondrogenic induction in combination with PRP into degenerated stifle (n=30), fetlock (n=58), pastern (n=34) and coffin (n=43) joints. Safety was assessed by means of clinical evaluation and the outcome was defined as failure to return to work (score 0), rehabilitation (score 1), return to work (score 2) and return to previous level (score 3), shortly (6 weeks) after treatment or at 18 weeks for the patients that returned for long-term follow-up (n=91). No adverse effects were noticed, except for three patients who showed a moderate flare reaction within one week after treatment of the fetlock joint without long-term effects (1.8% of 165 horses). Already after 6 weeks, 45% (native MSCs) and 60% (chondrogenic induced MSCs) of the treated patients returned to work (-> score 2+3) and the beneficial effects of the treatment further increased after 18 weeks (78% for native MSCs and 86% for chondrogenic induced MSCs). With the odds ratio of 1.47 for short-term and 1.24 for long-term, higher average scores (but statistically not significant) could be noticed using chondrogenic induced MSCs as compared to native MSCs. For all three lower limb joints a higher percentage of the treated patients returned to work after chondrogenic induced MSC treatment, whereas the opposite trend could be noticed for stifle joints. Nevertheless, more protracted follow-up data should confirm the sustainability of these joints
    corecore