17 research outputs found

    Cavitation cloud formation and surface damage of a model stone in a high-intensity focused ultrasound field

    Full text link
    This work investigates the fundamental role of cavitation bubble clouds in stone comminution by focused ultrasound. The fragmentation of stones by ultrasound has applications in medical lithotripsy for the comminution of kidney stones or gall stones, where their fragmentation is widely assumed to result from the high acoustic wave energy. However, high-intensity ultrasound can generate cavitation which is known to contribute to erosion as well and to cause damage away from the target, although the exact contribution of cavitation remains currently unclear. Based on in-situ experimental observations, post-mortem microtomography and acoustic simulations, the present work sheds light on the fundamental role of cavitation bubbles in the stone surface fragmentation by correlating the detected damages to the observed bubble activity. Our results show that not all clouds erode the stone, but only those located in preferential nucleation sites whose locations are herein examined. Furthermore, quantitative characterizations of the bubble clouds and their trajectories within the ultrasonic field are discussed. These include experiments with and without the presence of a model stone in the acoustic path length. Finally, the optimal stone-to-source distance maximizing the cavitation-induced surface damage area has been determined. Assuming the pressure magnitude within the focal region to exceed the cavitation pressure threshold, this location does not correspond to the acoustic focus, where the pressure is maximal, but rather to the region where the acoustic beam and thereby the acoustic cavitation activity near the stone surface is the widest

    Synchrotron X-ray phase-contrast imaging of ultrasonic drop atomization

    Full text link
    Ultrasonic atomization is employed to generate size-controllable droplets for a variety of applications. Here, we minimize the number of parameters dictating the process by studying the atomization of a single drop pending from an ultrasonic horn. Spatiotemporally resolved X-ray phase-contrast imaging measurements show that the number-median sizes of the ejected droplets can be predicted by the linear Navier-Stokes equations, signifying that the size distribution is controlled by the fluid properties and the driving frequency. Experiments with larger pendant water drops indicate that the fluid-structure interaction plays a pivotal role in determining the ejection onset of the pendant drop. The atomization of viscoelastic drops is dictated by extended ligament formation, entrainment of air, and ejection of drop-encapsulated bubbles. Existing scaling laws are used to explain the required higher input amplitudes for the complete atomization of viscoelastic drops as compared to inviscid drops. Finally, we elucidate the differences between capillary wave-based and cavitation-based atomization and show that inducing cavitation and strong bubble oscillations quickens the onset of daughter drop ejection but impedes their size control.Comment: 36 pages, 11 figure

    Shock-Induced Aerodynamic Fragmentation of a Liquid Droplet

    No full text
    Ce travail de thèse propose une description originale de la fragmentation aérodynamique d’une goutte d’eau, induite par une onde de choc plane, pour des régimes à la frontière entre les modes gouvernés par l’instabilité de Rayleigh-Taylor et ceux dominés par l’instabilité de Kelvin-Helmholtz. Un banc expérimental composé d’un tube à choc couplé à des diagnostics d’imagerie rapide est exploité pour caractériser les processus de fragmentation. Les résultats expérimentaux sont complétés par des simulations numériques réalisées à partir du code multiphasique compressible open-source ECOGEN. L’effet de l’onde de choc sur la goutte est évalué grâce à une modélisation théorique basée sur l’acoustique géométrique permettant de décrire la dynamique spatio-temporelle des réflexions d’onde à l’intérieur de la goutte et de prédire le lieu des points de plus haute densité d’énergie. Le champ de pression est résolu à partir de simulations numériques qui indiquent que la tension de rupture de l’eau est atteinte pour une onde de choc évoluant à un nombre de Mach de 1.7. Dès lors, un processus de cavitation dont les conséquences sur la dynamique de la fragmentation pourraient être significatives, est possible. Concernant la dynamique interfaciale, les expériences comme les simulations révèlent le développement d’une perturbation azimutale transverse à l’origine d’une structure ligamentaire périodique. Une analyse de Fourier des résultats numériques 3-D suggère que l’initiation de cette déstabilisation est indépendante des effets capillaires, à l’inverse de sa croissance. La dynamique ligamentaire apparaît être un processus cyclique dont la fréquence est celle du lâché de vortex dans le sillage del a goutte. Ce schéma récurrent cesse après quatre cycles. Il s’en suit alors la perte de l’intégrité structurelle du corps résiduel de la goutte des suites du développement d’une cavité gazeuse, dans le liquide, qui agit comme une région de fragilité et donc, facilite la fragmentation.This thesis proposed a groundbreaking description of the shock-induced aerodynamic fragmentation of a water droplet at the transition of the Rayleigh-Taylor Piercing and the Shear-Induced Entrainment regimes. An experimental facility consisting of a shock tube and high-speed imaging diagnostics is used to investigate the fragmentation processes. Experimental results are supported with numerical simulations performed with the open-source code ECOGEN dedicated to multiphase compressible flows. The shock wave effect on the droplet is assessed by a theoretical modelling based on geometrical acoustics which allows for the description of the wave spatio-temporal dynamics and enables to predict the time-dependent location of the highest energy density. Pressure fields are determined using numerical simulations. It appears that the water tensile rupture is reached for a shock wave Mach number of 1.7 from which bubble cloud cavitation may occur by causing signification changes in the fragmentation dynamics. As regards to the interfacial dynamics, both experiments and numerical simulations show the development of a transverse azimutal modulation resulting in the periodic ligament structure at the droplet surface. Contrary to the modulation growth, its initiation seems to be independent of the capillary effects as revealed by a Fourier analysis of the 3-D numerical results. The ligament dynamics is a cyclic process driven by the vortex shedding process in the wake of the droplet. Four cycles have been observed before the residual droplet core breaks up owing to the growth of an air cavity inside the droplet that acts as weak spot, and thus facilitating the droplet split-off

    Fragmentation aérodynamique d’une goutte liquide induite par une onde de choc plane

    No full text
    This thesis proposed a groundbreaking description of the shock-induced aerodynamic fragmentation of a water droplet at the transition of the Rayleigh-Taylor Piercing and the Shear-Induced Entrainment regimes. An experimental facility consisting of a shock tube and high-speed imaging diagnostics is used to investigate the fragmentation processes. Experimental results are supported with numerical simulations performed with the open-source code ECOGEN dedicated to multiphase compressible flows. The shock wave effect on the droplet is assessed by a theoretical modelling based on geometrical acoustics which allows for the description of the wave spatio-temporal dynamics and enables to predict the time-dependent location of the highest energy density. Pressure fields are determined using numerical simulations. It appears that the water tensile rupture is reached for a shock wave Mach number of 1.7 from which bubble cloud cavitation may occur by causing signification changes in the fragmentation dynamics. As regards to the interfacial dynamics, both experiments and numerical simulations show the development of a transverse azimutal modulation resulting in the periodic ligament structure at the droplet surface. Contrary to the modulation growth, its initiation seems to be independent of the capillary effects as revealed by a Fourier analysis of the 3-D numerical results. The ligament dynamics is a cyclic process driven by the vortex shedding process in the wake of the droplet. Four cycles have been observed before the residual droplet core breaks up owing to the growth of an air cavity inside the droplet that acts as weak spot, and thus facilitating the droplet split-off.Ce travail de thèse propose une description originale de la fragmentation aérodynamique d’une goutte d’eau, induite par une onde de choc plane, pour des régimes à la frontière entre les modes gouvernés par l’instabilité de Rayleigh-Taylor et ceux dominés par l’instabilité de Kelvin-Helmholtz. Un banc expérimental composé d’un tube à choc couplé à des diagnostics d’imagerie rapide est exploité pour caractériser les processus de fragmentation. Les résultats expérimentaux sont complétés par des simulations numériques réalisées à partir du code multiphasique compressible open-source ECOGEN. L’effet de l’onde de choc sur la goutte est évalué grâce à une modélisation théorique basée sur l’acoustique géométrique permettant de décrire la dynamique spatio-temporelle des réflexions d’onde à l’intérieur de la goutte et de prédire le lieu des points de plus haute densité d’énergie. Le champ de pression est résolu à partir de simulations numériques qui indiquent que la tension de rupture de l’eau est atteinte pour une onde de choc évoluant à un nombre de Mach de 1.7. Dès lors, un processus de cavitation dont les conséquences sur la dynamique de la fragmentation pourraient être significatives, est possible. Concernant la dynamique interfaciale, les expériences comme les simulations révèlent le développement d’une perturbation azimutale transverse à l’origine d’une structure ligamentaire périodique. Une analyse de Fourier des résultats numériques 3-D suggère que l’initiation de cette déstabilisation est indépendante des effets capillaires, à l’inverse de sa croissance. La dynamique ligamentaire apparaît être un processus cyclique dont la fréquence est celle du lâché de vortex dans le sillage del a goutte. Ce schéma récurrent cesse après quatre cycles. Il s’en suit alors la perte de l’intégrité structurelle du corps résiduel de la goutte des suites du développement d’une cavité gazeuse, dans le liquide, qui agit comme une région de fragilité et donc, facilite la fragmentation

    A phenomenological analysis of droplet shock-induced cavitation using a multiphase modelling approach

    No full text
    International audienceInvestigations of shock-induced cavitation within a droplet is highly challenged by the multiphase nature of the mechanisms involved. Within the context of heterogeneous nucleation, we introduce a thermodynamically well-posed multiphase numerical model accounting for phase compression and expansion, which relies on a finite pressure-relaxation rate formulation. We simulate (i) the spherical collapse of a bubble in a free field, (ii) the interaction of a cylindrical water droplet with a planar shock wave, and (iii) the high-speed impact of a gelatin droplet onto a solid surface. The determination of the finite pressure-relaxation rate is done by comparing the numerical results with the Keller-Miksis model, and the corresponding experiments of Sembian et al. and Field, Dear, and Ogren, respectively. For the latter two, the pressure-relaxation rate is found to be µ = 3.5 and µ = 0.5, respectively. Upon validation of the determined pressure-relaxation rate, we run parametric simulations to elucidate the critical Mach number from which cavitation is likely to occur. Complementing simulations with a geometrical acoustic model, we provide a phenomenological description of the shock-induced cavitation within a droplet, as well as a discussion on the bubble-cloud growth effect on the droplet flow field. The usual prediction of the bubble cloud center, given in the literature, is eventually modified to account for the expansion wave magnitude

    On bubble cloud growth in shock-droplet interaction

    No full text
    International audienceInvestigations of shock-induced cavitation is highly challenged by the multiphase nature of the mechanisms involved. Thermodynamically well-posed multiphase numerical models accouting for phase compression and expansion however allow to elucidate the underlying physics. A description of the bubble cloud growth and its effects on the early droplet dynamics is proposed, as well as a critical discussion on the analytical predictions of the cavitation event previously reported

    Geometry effects on the droplet shock-induced cavitation

    No full text
    International audienceAssessment of geometry effects affecting shock-induced cavitation within a droplet is investigated for the first time. To do this, we use a thermodynamically well-posed multiphase numerical model accounting for phase compression and expansion, which relies on a finite pressure-relaxation rate formulation and which allow for heterogeneous nucleation. These geometry effects include the shape of the transmitted wave front, which is related to the shock speed to droplet sound speed ratio, and the droplet geometry (cylindrical versus spherical). Phenomenological differences between the column and the droplet configurations are presented. In addition, the critical Mach number for cavitation appearance is determined for both cases: between M = 1.8 and M = 2 for the column, and between M = 2 and M = 2.2 for the droplet. Based on the transmitted wavefront geometry, with Mach number varying from 1.6 to 6, two cavitation regimes have been identified and the transition has been characterised: an exponentially (M 4.38) increasing bubble-cloud volume. On more applied aspects, we also investigate the influence of the bubble cloud on the interface disruption and compare the results against the pure liquid droplet test case. A parallel with the technique of effervescent atomization is eventually presented

    High-magnification shadowgraphy for the study of drop breakup in a high-speed gas flow

    No full text
    International audienceDirect observation of the droplet breakup process in high-speed gas flows is a critical challenge that needs to be addressed to elucidate the physical mechanisms underlying the fragmentation phenomenon. Here, we present a high-magnification and high-speed shadowgraph technique that allows the visualization of this process over its whole evolution and resolves detailed features of the breakup zone. The developed experimental method uses a high-speed camera equipped with a long-distance microscope. The backlight illumination source is provided by the laser-induced fluorescence of a dye solution that delivers short pulses at a high-repetition rate. Artifacts resulting from the laser coherence are therefore reduced

    Soft Soil Investigation and Sensitive Study in the VPS Environment - Impact Testing and Simulations

    No full text
    The purpose of this work is to investigate experimentally a given soft soil and to generate a FE-model of it. The soil numerical model, after validation, can be then used for virtual component testing or for the improvement of crashworthiness structure design concepts for various crash scenarios
    corecore