35 research outputs found

    Apolipocrustacein, formerly vitellogenin, is the major egg yolk precursor protein in decapod crustaceans and is homologous to insect apolipophorin II/I and vertebrate apolipoprotein B

    Get PDF
    BACKGROUND: In animals, the biogenesis of some lipoprotein classes requires members of the ancient large lipid transfer protein (LLTP) superfamily, including the cytosolic large subunit of microsomal triglyceride transfer protein (MTP), vertebrate apolipoprotein B (apoB), vitellogenin (Vtg), and insect apolipophorin II/I precursor (apoLp-II/I). In most oviparous species, Vtg, a large glycolipoprotein, is the main egg yolk precursor protein. RESULTS: This report clarifies the phylogenetic relationships of LLTP superfamily members and classifies them into three families and their related subfamilies. This means that the generic term Vtg is no longer a functional term, but is rather based on phylogenetic/structural criteria. In addition, we determined that the main egg yolk precursor protein of decapod crustaceans show an overall greater sequence similarity with apoLp-II/I than other LLTP, including Vtgs. This close association is supported by the phylogenetic analysis, i.e. neighbor-joining, maximum likelihood and Bayesian inference methods, of conserved sequence motifs and the presence of three common conserved domains: an N-terminal large lipid transfer module marker for LLTP, a DUF1081 domain of unknown function in their central region exclusively shared with apoLp-II/I and apoB, and a von Willebrand-factor type D domain at their C-terminal end. Additionally, they share a conserved functional subtilisin-like endoprotease cleavage site with apoLp-II/I, in a similar location. CONCLUSION: The structural and phylogenetic data presented indicate that the major egg yolk precursor protein of decapod crustaceans is surprisingly closely related to insect apoLp-II/I and vertebrate apoB and should be known as apolipocrustacein (apoCr) rather than Vtg. These LLTP may arise from an ancient duplication event leading to paralogs of Vtg sequences. The presence of LLTP homologs in one genome may facilitate redundancy, e.g. involvement in lipid metabolism and as egg yolk precursor protein, and neofunctionalization and subfunctionalization, e.g. involvement in clotting cascade and immune response, of extracellular LLTP members. These protein-coding nuclear genes may be used to resolve phylogenetic relationships among the major arthropod groups, especially the Pancrustacea-major splits

    Revealing genes associated with vitellogenesis in the liver of the zebrafish (Danio rerio) by transcriptome profiling

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In oviparous vertebrates, including fish, vitellogenesis consists of highly regulated pathways involving 17ÎČ-estradiol (E2). Previous studies focused on a relatively small number of hepatic expressed genes during vitellogenesis. This study aims to identify hepatic genes involved in vitellogenesis and regulated by E2, by using zebrafish microarray gene expression profiling, and to provide information on functional distinctive genes expressed in the liver of a vitellogenic female, using zebrafish as a model fish.</p> <p>Results</p> <p>Genes associated with vitellogenesis were revealed by the following paired t-tests (SAM) comparisons: a) two-month old vitellogenic (Vit2) females were compared with non-vitellogenic (NV) females, showing 825 differentially expressed transcripts during early stages of vitellogenesis, b) four-month old vitellogenic (Vit4) females were compared with NV females, showing 1,046 differentially expressed transcripts during vitellogenesis and c) E2-treated males were compared with control males, showing 1,828 differentially expressed transcripts regulated by E2. A Venn diagram revealed 822 common transcripts in the three groups, indicating that these transcripts were involved in vitellogenesis and putatively regulated by E2. In addition, 431 transcripts were differentially expressed in Vit2 and Vit4 females but not in E2-treated males, indicating that they were putatively not up-regulated by E2. Correspondence analysis showed high similarity in expression profiles of Vit2 with Vit4 and of NV females with control males. The E2-treated males differed from the other groups. The repertoire of genes putatively regulated by E2 in vitellogenic females included genes associated with protein synthesis and reproduction. Genes associated with the immune system processes and biological adhesion, were among the genes that were putatively not regulated by E2. E2-treated males expressed a large array of transcripts that were not associated with vitellogenesis.</p> <p>The study revealed several genes that were not reported before as being regulated by E2. Also, the hepatic expression of several genes was reported here for the first time.</p> <p>Conclusion</p> <p>Gene expression profiling of liver samples revealed 1,046 differentially expressed transcripts during vitellogenesis of which at least ~64% were regulated by E2. The results raise the question on the regulation pattern and temporal pleiotropic expression of hepatic genes in vitellogenic females.</p

    Introduction to the special issue on recent advances in fish gamete and embryo research

    No full text
    Introduction to the special issue on recent advances in fish gamete and embryo researc

    Aquaculture. Special issue on recent advances in fish gamete and embryo research. Celebrating 40 years of aquaculture

    No full text
    Aquaculture. Special issue on recent advances in fish gamete and embryo research. Celebrating 40 years of aquacultur

    Design and characterization of genetically engineered zebrafish aquaporin-3 mutants highly permeable to the cryoprotectant ethylene glycol

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Increasing cell membrane permeability to water and cryoprotectants is critical for the successful cryopreservation of cells with large volumes. Artificial expression of water-selective aquaporins or aquaglyceroporins (GLPs), such as mammalian aquaporin-3 (AQP3), enhances cell permeability to water and cryoprotectants, but it is known that AQP3-mediated water and solute permeation is limited and pH dependent. To exploit further the possibilities of using aquaporins in cryobiology, we investigated the functional properties of zebrafish (<it>Danio rerio</it>) GLPs.</p> <p>Results</p> <p>Water, glycerol, propylene glycol and ethylene glycol permeability of zebrafish Aqp3a, -3b, -7, -9a, -9b, -10a and -10b, and human AQP3, was examined. Expression in <it>Xenopus laevis </it>oocytes indicated that the permeability of DrAqp3a and -3b to ethylene glycol was higher than for glycerol or propylene glycol under isotonic conditions, unlike other zebrafish GLPs and human AQP3, which were more permeable to glycerol. In addition, dose-response experiments and radiolabeled ethylene glycol uptake assays suggested that oocytes expressing DrAqp3b were permeated by this cryoprotectant more efficiently than those expressing AQP3. Water and ethylene glycol transport through DrAqp3a and -3b were, however, highest at pH 8.5 and completely abolished at pH 6.0. Point mutations in the DrAqp3b amino acid sequence rendered two constructs, DrAqp3b-T85A showing higher water and ethylene glycol permeability at neutral and alkaline pH, and DrAqp3b-H53A/G54H/T85A, no longer inhibited at acidic pH but less permeable than the wild type. Finally, calculation of permeability coefficients for ethylene glycol under concentration gradients confirmed that the two DrAqp3b mutants were more permeable than wild-type DrAqp3b and/or AQP3 at neutral pH, resulting in a 2.6- to 4-fold increase in the oocyte intracellular concentration of ethylene glycol.</p> <p>Conclusion</p> <p>By single or triple point mutations in the DrAqp3b amino acid sequence, we constructed one mutant with enhanced ethylene glycol permeability and another with reduced pH sensitivity. The DrAqp3b and the two mutant constructs may be useful for application in cryobiology.</p

    Oogenesis in teleosts: How fish eggs are formed

    No full text
    Special issue Fish Reproduction.-- 23 pages, 8 figuresOne of the major objectives of the aquaculture industry is the production of a large number of viable eggs with high survival. Major achievements have been made in recent years in improving protocols for higher efficiency of egg production and viability of progeny. Main gaps remain, however, in understanding the dynamic processes associated with oogenesis, the formation of an egg, from the time that germ cells turn into oogonia, until the release of ova during spawning in teleosts. Recent studies on primordial germ-cells, yolk protein precursors and their processing within the developing oocyte, the deposition of vitamins in eggs, structure and function of egg envelopes and oocyte maturation processes, further reveal the complexity of oogenesis. Moreover, numerous circulating endocrine and locally-acting paracrine and autocrine factors regulate the various stages of oocyte development and maturation. Though it is clear that the major regulators during vitellogenesis and oocyte maturation are the pituitary gonadotropins (LH and FSH) and sex steroids, the picture emerging from recent studies is of complex hormonal cross-talk at all stages between the developing oocyte and its surrounding follicle layers to ensure coordination of the various processes that are involved in the production of a fertilizable egg. In this review we aim at highlighting recent advances on teleost fish oocyte differentiation, maturation and ovulation, including those involved in the degeneration and reabsorption of ovarian follicles (atresia). The role of blood-borne and local ovarian factors in the regulation of the key steps of development reveal new aspects associated with egg formationThe research conducted by Joan Cerdà, was supported by: the Spanish Ministry of Science and Innovation (MICINN; AGL2007-60262). The European Commission (Q5RS-2002-00784-CRYOCYTE, MRTN-CT-2006-035995-Aqua(glycero)porins) and Aquaculture R&D and Innovation Reference Network (XRAq) (Generalitat de Catalonia, Spain). The research performed by Esther Lubzens was funded by the Israel Science Foundation (ISF grant 1128/04 and 1195/07) and the review was written with the support of the Generalitat de Catalunya, Department d’Innovació, Universitats I Empresa to ELPeer Reviewe

    Oogenesis in teleosts: How fish eggs are formed

    No full text
    One of the major objectives of the aquaculture industry is the production of a large number of viable eggs with high survival. Major achievements have been made in recent years in improving protocols for higher efficiency of egg production and viability of progeny. Main gaps remain, however, in understanding the dynamic processes associated with oogenesis, the formation of an egg, from the time that germ cells turn into oogonia, until the release of ova during spawning in teleosts. Recent studies on primordial germ-cells, yolk protein precursors and their processing within the developing oocyte, the deposition of vitamins in eggs, structure and function of egg envelopes and oocyte maturation processes, further reveal the complexity of oogenesis. Moreover, numerous circulating endocrine and locally-acting paracrine and autocrine factors regulate the various stages of oocyte development and maturation. Though it is clear that the major regulators during vitellogenesis and oocyte maturation are the pituitary gonadotropins (LH and FSH) and sex steroids, the picture emerging from recent studies is of complex hormonal cross-talk at all stages between the developing oocyte and its surrounding follicle layers to ensure coordination of the various processes that are involved in the production of a fertilizable egg. In this review we aim at highlighting recent advances on teleost fish oocyte differentiation, maturation and ovulation, including those involved in the degeneration and reabsorption of ovarian follicles (atresia). The role of blood-borne and local ovarian factors in the regulation of the key steps of development reveal new aspects associated with egg formation
    corecore