49 research outputs found

    Immune Activation Reduces Sperm Quality in the Great Tit

    Get PDF
    Mounting an immune response against pathogens incurs costs to organisms by its effects on important life-history traits, such as reproductive investment and survival. As shown recently, immune activation produces large amounts of reactive species and is suggested to induce oxidative stress. Sperm are highly susceptible to oxidative stress, which can negatively impact sperm function and ultimately male fertilizing efficiency. Here we address the question as to whether mounting an immune response affects sperm quality through the damaging effects of oxidative stress. It has been demonstrated recently in birds that carotenoid-based ornaments can be reliable signals of a male's ability to protect sperm from oxidative damage. In a full-factorial design, we immune-challenged great tit males while simultaneously increasing their vitamin E availability, and assessed the effect on sperm quality and oxidative damage. We conducted this experiment in a natural population and tested the males' response to the experimental treatment in relation to their carotenoid-based breast coloration, a condition-dependent trait. Immune activation induced a steeper decline in sperm swimming velocity, thus highlighting the potential costs of an induced immune response on sperm competitive ability and fertilizing efficiency. We found sperm oxidative damage to be negatively correlated with sperm swimming velocity. However, blood resistance to a free-radical attack (a measure of somatic antioxidant capacity) as well as plasma and sperm levels of oxidative damage (lipid peroxidation) remained unaffected, thus suggesting that the observed effect did not arise through oxidative stress. Towards the end of their breeding cycle, swimming velocity of sperm of more intensely colored males was higher, which has important implications for the evolution of mate choice and multiple mating in females because females may accrue both direct and indirect benefits by mating with males having better quality sperm

    Polyandry in coal tits Parus ater: fitness consequences of putting eggs into multiple genetic baskets

    No full text
    Schmoll T, Schurr FM, Winkel W, Epplen JT, Lubjuhn T. Polyandry in coal tits Parus ater: fitness consequences of putting eggs into multiple genetic baskets. JOURNAL OF EVOLUTIONARY BIOLOGY. 2007;20(3):1115-1125.Females of many species mate with multiple males within a single reproductive cycle. One hypothesis to explain polyandry postulates that females benefit from increasing within-brood genetic diversity. Two mechanisms may render sire genetic diversity beneficial for females, genetic bet-hedging vs. non-bet-hedging. We analysed whether females of the socially monogamous coal tit (Parus ater) benefit via either of these mechanisms when engaging in extra-pair (i.e. polyandrous) mating. To obtain a measure of within-brood genetic diversity as a function of paternal genetic contributions, we calculated a sire diversity index based on the established Shannon-Wiener Index. In 246 broods from two consecutive years, sire genetic diversity had no effect on either the mean or the variance in brood fitness measured as offspring recruitment within 4 years after birth. The hypothesis that benefits of increasing sire diversity contribute to selection for female extra-pair mating behaviour in P. ater was therefore not supported

    Variation in the adult body mass of Wilson's storm petrels Oceanites oceanicus during breeding

    No full text
    Quillfeldt P, Masello J, Lubjuhn T. Variation in the adult body mass of Wilson’s storm petrels Oceanites oceanicus during breeding. Polar Biology. 2006;29(5):372-378.Mass loss of breeding birds might be due to the physiological stress of breeding or it could be an adaptation to lower the costs of flight to the feeding areas. We examined the natural variation in the adult body mass of Wilson’s storm petrels Oceanites oceanicus on King George Island, South Shetland Islands over four breeding seasons. During two seasons, the prey abundance was high, while it was poor during the other two seasons. Only breeding birds were sampled; the fluctuations in mass were similar among males and females. During incubation, the mass of the adults was high in good seasons and low in poor seasons. Thus, body mass during incubation was determined by energetic constraints. However, during chick feeding, adults lost mass in the good seasons but gained mass in the poor seasons, suggesting that mass loss during chick rearing is not primarily caused by stress, but is regulated adaptively. Adults in poor conditions may buffer against unpredictable food supply by increasing their own body mass, even at the expense of the chick. Reduced body condition at the beginning of the breeding season was associated with reduced egg volumes and late laying, suggesting that the initial body condition influenced the level of investment in the current breeding attempt
    corecore