4 research outputs found

    Analisis Limit Momen Pipa Elbow Dengan Beban In-Plane Bending

    Get PDF
    Pipe bends or elbows are of important component in a piping system. In addition to its function for changing the direction of piping due to layout restriction, an elbow can accommodate expansion because it is more flexible than an equivalent straight pipe with the same material and dimension. However, and elbow can not be analyzed using the engineer theory of bending, because its cross-section become oval under bending. This paper reports a result of finite element study of bending behavior of a pipe elbow and its influence on limit moment. Limit moment was obtained using nonlinear analysis and Newton-Raphson algorithm was employed. Material behavior of pipe was treated as large strain, elastic-perfectly-plastic. The results show that a pipe elbow under in-plane opening bending is stiffer than those under in-plane closing bending, indicated by their limit load – 4.83 times yield stress for in-plane opening bending and 1.34 times the yield stress for in-plane closing bending

    Analisis Kekuatan Dan Ekspansi Volume Tangki Toroidal Penampang Eliptik Dengan Beban Internal Pressure

    Get PDF
    In under to reduce the Public Service Obligation (PSO) on oil fuel, the goverment of Indonesia initianted a program of conversion of oil fuel into gas fuel (BBG) for passenger cars. In supporting this program, it is required to develop the component of combustion system. One of the components is strorage tank for BBG that must be carefully designed to avoid burst type failure. Based on previous research, a toroidal tank can withstand higher limit pressure than the PERTAMINA LPG 3kg storage tank used nowadays in Indonesia household. The present study was exstended to toroidal tank of elliptic cross-section. The strength in term of limit pressure was evaluated numerically using the ANSYS 13 finite element software. The ANSYS SHELL 181 element type was used. Limit pressure were obtained via nonlinier analysis using the well-known Newton-Raphson algorithm, and corresponding stress and strain were evaluated. The results show that toroidal tank having elliptic ratio (a/b) of 1.0 (circular) can withstand highest limit pressure, both for in-plane and out-of-plane elliptic, i.e.,1.16 times the pressure to yield (py). Attachment of a nozzle on intrados position results in reducing the limit pressure by 5.21%, becomes 1.1 py. The result of corresponding volume expansion when the limit pressure was reached is 0.337 % of the initial volume. It is interesting to note that limit pressure become lower than the pressure to yield when the ratio of major to minor axis of the ellip higher than 1.4. In conclusion. the value of ellipticity a/b must not be higher than 1.4 for further development of a toroidal tank. keywords: toroidal, in-plane elliptic, out-of-plane elliptic, limit pressure, volume expansio

    Kekuatan Geser dan Integritas Struktur Sambungan Fillet Weld pada Support Lug Bejana Tekan Silinder Vertikal

    Full text link
    Bejana tekan merupakan wadah tertutup yang dirancang untuk menampung cairan atau gas dengan temperatur yang berbeda dari temperatur lingkungan dan digunakan untuk bermacam-macam aplikasi di berbagai sector industri. Salah satu tipe bejana tekanyang banyak dipakai adalah bejana tekan silinder vertikal dengan lug supports. Support lug pada bejana tekan silinder biasanya diattach pada dinding luar silinder dengan pad menggunakan sambungan las sudut (fillet weld). Untuk sambungan seperti ini, bejana dan pad tidak terintegrasi secara sempurna, tetapi ada retak awal yang inherent pada interface bejana dan pad. Untuk beban yang berulang, retak ini dapat merambat ke welding yang pada akhirnya menyebabkan struktur sambungan mengalami kegagalan.Penelitian ini dilakukan dengan simulasi elemen hingga untuk mengkaji stress pada sambungan fillet weld vessel dan pad. Limit beban untuk welding arah vertical (aksial) dibandingkan dengan limit beban untuk welding pada arah vertical dan horizontal dan Perubahan distribusi stress dan stress maksimum hasil dengan welding pada sisi vertikal dan horizontal dibandingkan dengan hasil welding arah vertikal saja. Pada simulasi ini beban yang ditinjau hanya berat bejana sendiri, tidak adab eban lain yang bekerja. Simulasi ini menggunakan software ANSYS 2019 R3 dengan element solid (SOLID187). Material yang digunakan pada support lug adalah SA 516 Gr 70 dan diasumsikan bersifat elastic perfectly plastic. Hasil simulasi menunjukkan bahwa untuk welding hanya pada sisi vertikal, limit load yang dihasilkan adalah 54889 kN. Regangan yang terjadi pada muka radial-aksial (SXY) lebih besar dari pada muka lainnya. Stress tertinggi yang dicapai adalah sebesar 1,325 kali tegangan luluh material las. Penambahan las pada sisi horizontal menyebabkan limit beban meningkat menjadi 55191 kN. Ada peningkatan limit beban sebesar 301.6 kN. Namun regangan menjadi lebih besar pada muka radial-aksial(XZ) dan hoop-aksial (YZ). Sementara stress yang terjadi pada lasan pad dan vessel justru meningkat menjadi 1,660 kali tegangan luluh material las. Tegangan yang terjadi pada arah circumferensial (SY) lebih besar daripada tegangan yang terjadi pada arah longitudinal (SZ). Pemberian lasan pada sisi horizontal mengurangi tegangan pada lasan ujung atas dibandingkan dengan hanya pemberian las hanya pada sisivertikal
    corecore