1,628 research outputs found

    A Definitive Optical Detection of a Supercluster at z = 0.91

    Get PDF
    We present the results from a multi-band optical imaging program which has definitively confirmed the existence of a supercluster at z = 0.91. Two massive clusters of galaxies, CL1604+4304 at z = 0.897 and CL1604+4321 at z = 0.924, were originally observed in the high-redshift cluster survey of Oke, Postman & Lubin (1998). They are separated by 4300 km/s in radial velocity and 17 arcminutes on the plane of the sky. Their physical and redshift proximity suggested a promising supercluster candidate. Deep BRi imaging of the region between the two clusters indicates a large population of red galaxies. This population forms a tight, red sequence in the color--magnitude diagram at (R-i) = 1.4. The characteristic color is identical to that of the spectroscopically-confirmed early-type galaxies in the two member clusters. The red galaxies are spread throughout the 5 Mpc region between CL1604+4304 and CL1604+4321. Their spatial distribution delineates the entire large scale structure with high concentrations at the cluster centers. In addition, we detect a significant overdensity of red galaxies directly between CL1604+4304 and CL1604+4321 which is the signature of a third, rich cluster associated with this system. The strong sequence of red galaxies and their spatial distribution clearly indicate that we have discovered a supercluster at z = 0.91.Comment: Accepted for publication in Astrophysical Journal Letters. 13 pages, including 5 figure

    Galois covers of the open p-adic disc

    Full text link
    This paper investigates Galois branched covers of the open pp-adic disc and their reductions to characteristic pp. Using the field of norms functor of Fontaine and Wintenberger, we show that the special fiber of a Galois cover is determined by arithmetic and geometric properties of the generic fiber and its characteristic zero specializations. As applications, we derive a criterion for good reduction in the abelian case, and give an arithmetic reformulation of the local Oort Conjecture concerning the liftability of cyclic covers of germs of curves.Comment: 19 pages; substantial organizational and expository changes; this is the final version corresponding to the official publication in Manuscripta Mathematica; abstract update

    The CFH Optical PDCS survey (COP) I: The Data

    Full text link
    This paper presents and gives the COP (COP: CFHT Optical PDCS; CFHT: Canada-France-Hawaii Telescope; PDCS: Palomar Distant Cluster Survey) survey data. We describe our photometric and spectroscopic observations with the MOS multi-slit spectrograph at the CFH telescope. A comparison of the photometry from the PDCS (Postman et al. 1996) catalogs and from the new images we have obtained at the CFH telescope shows that the different magnitude systems can be cross-calibrated. After identification between the PDCS catalogues and our new images, we built catalogues with redshift, coordinates and V, I and Rmagnitudes. We have classified the galaxies along the lines of sight into field and structure galaxies using a gap technique (Katgert et al. 1996). In total we have observed 18 significant structures along the 10 lines of sight.Comment: 40 pages, 13 figures, accepted in A

    COMPASS: a 2.6m telescope for CMBR polarization studies

    Get PDF
    COMPASS (COsmic Microwave Polarization at Small Scale) is an experiment devoted to measuring the polarization of the CMBR. Its design and characteristics are presented

    The Assembly of the Red Sequence at z ~ 1: The Color and Spectral Properties of Galaxies in the Cl1604 Supercluster

    Get PDF
    We investigate the properties of the 525 spectroscopically confirmed members of the Cl1604 supercluster at z ~ 0.9 as part of the Observations of Redshift Evolution in Large Scale Environments survey. In particular, we focus on the photometric, stellar mass, morphological, and spectral properties of the 305 member galaxies of the eight clusters and groups that comprise the Cl1604 supercluster. Using an extensive Keck Low-Resolution Imaging Spectrometer (LRIS)/DEep Imaging Multi-Object Spectrograph (DEIMOS) spectroscopic database in conjunction with ten-band ground-based, Spitzer, and Hubble Space Telescope imaging, we investigate the buildup of the red sequence in groups and clusters at high redshift. Nearly all of the brightest and most massive red-sequence galaxies present in the supercluster environment are found to lie within the bounds of the cluster and group systems, with a surprisingly large number of such galaxies present in low-mass group systems. Despite the prevalence of these red-sequence galaxies, we find that the average cluster galaxy has a spectrum indicative of a star-forming galaxy, with a star formation rate between those of z ~ 1 field galaxies and moderate-redshift cluster galaxies. The average group galaxy is even more active, exhibiting spectral properties indicative of a starburst. The presence of massive, red galaxies and the high fraction of starbursting galaxies present in the group environment suggest that significant processing is occurring in group environments at z ~ 1 and earlier. There is a deficit of low-luminosity red-sequence galaxies in all Cl1604 clusters and groups, suggesting that such galaxies transition to the red sequence at later times. Extremely massive (~10^(12)M_☉) red-sequence galaxies routinely observed in rich clusters at z ~ 0 are also absent from the Cl1604 clusters and groups. We suggest that such galaxies form at later times through merging processes. There are significant populations of transition galaxies at intermediate stellar masses (log(M_*)=10.25-10.75) present in the group and cluster environments, suggesting that this range is important for the buildup of the red-sequence mass function at z ~ 1. Through a comparison of the transitional populations present in the Cl1604 cluster and group systems, we find evidence that massive blue-cloud galaxies are quenched earliest in the most dynamically relaxed systems and at progressively later times in dynamically unrelaxed systems

    Orbital Simulations for Directed Energy Deflection of Near-Earth Asteroids

    Get PDF
    Directed energy laser ablation at the surface of an asteroid or comet produces an ejection plume that will impart a thrust on the asteroid. This thrust can mitigate a threatened collision with the Earth. This technique uses the asteroid itself as the deflection propellant. The DESTAR laser system is designed to produce a sufficiently intense spot on the surface of an asteroid to accomplish this in one of two operational modes. One is a complete stand-off mode where a large space based phased-array laser directed energy system can interdict asteroids at large distances allowing sufficient time to mitigate nearly all known threats. A much smaller version of the same system, called DE-STARLITE, can be used in a stand-on mode by taking a much smaller laser to the asteroid and slowly deflecting it over a sufficiently long period of time. Here we present orbital simulations for a range of near-Earth asteroid impact scenarios for both the standoff and stand-on systems. Simulated orbital parameters include asteroid radius and composition, initial engagement time, total laser-on time and total energy delivered to target. The orbital simulations indicate that, for exposures that are less than an orbital time, the thrust required to divert an asteroid is generally inversely proportional to laser-on time, proportional to target mass and proportional to the desired miss distance. We present a detailed stand-on scenario, consistent with current dedicated mission capabilities, to show the potential for laser ablation to allow significant deflection of targets with small systems. As one example we analyze a DE-STARLITE mission scenario that is in the same mass and launch envelope as the proposed Asteroid Redirect Mission (ARM) but using a multi kilowatt class laser array capable of deflecting a 325 m diameter asteroid with 2N of thrust for 15 years in a small fraction of even the smallest SLS block 1 launch vehicle configuration
    • 

    corecore