51 research outputs found

    Breast cancer risk factors in relation to breast density (United States)

    Get PDF
    OBJECTIVES: Evaluate known breast cancer risk factors in relation to breast density. METHODS: We examined factors in relation to breast density in 144,018 New Hampshire (NH) women with at least one mammogram recorded in a statewide mammography registry. Mammographic breast density was measured by radiologists using the BI-RADS classification; risk factors of interest were obtained from patient intake forms and questionnaires. RESULTS: Initial analyses showed a strong inverse influence of age and body mass index (BMI) on breast density. In addition, women with late age at menarche, late age at first birth, premenopausal women, and those currently using hormone therapy (HT) tended to have higher breast density, while those with greater parity tended to have less dense breasts. Analyses stratified on age and BMI suggested interactions, which were formally assessed in a multivariable model. The impact of current HT use, relative to nonuse, differed across age groups, with an inverse association in younger women, and a positive association in older women (p < 0.0001 for the interaction). The positive effects of age at menarche and age at first birth, and the inverse influence of parity were less apparent in women with low BMI than in those with high BMI (p = 0.04, p < 0.0001 and p = 0.01, respectively, for the interactions). We also noted stronger positive effects for age at first birth in postmenopausal women (p = 0.004 for the interaction). The multivariable model indicated a slight positive influence of family history of breast cancer. CONCLUSIONS: The influence of age at menarche and reproductive factors on breast density is less evident in women with high BMI. Density is reduced in young women using HT, but increased in HT users of age 50 or more

    Reporting Recommendations for Tumor Marker Prognostic Studies (REMARK): Explanation and Elaboration

    Get PDF
    The REMARK “elaboration and explanation” guideline, by Doug Altman and colleagues, provides a detailed reference for authors on important issues to consider when designing, conducting, and analyzing tumor marker prognostic studies

    Embryotoxic Effects Produced by Magnesium Deficiency in Rats

    No full text

    Radon risk reassessed

    No full text

    Radon in air and water

    Get PDF
    Radon is a natural radioactive gas that you cannot see, smell, or taste and that can only be detected with special equipment. It is produced by the radioactive decay of radium, which in turn is derived from the radioactive decay of uranium. Uranium is found in small quantities in all soils and rocks, although the amount varies from place to place. Radon decays to form radioactive particles that can enter the body by inhalation. Inhalation of the short-lived decay products of radon has been linked to an increase in the risk of developing cancers of the respiratory tract, especially of the lungs. Breathing radon in the indoor air of homes contributes to about 15,000 lung cancer deaths each year in the United States and 1,100 in the UK (HPA 2009). Only smoking causes more lung cancer deaths
    corecore