8 research outputs found

    Variability in Crassulacean Acid Metabolism: A Survey of North Carolina Succulent Species

    Get PDF
    This is the publisher's version, also available electronically from: http://www.jstor.org/stable/10.2307/2474765.The correlation between succulence and Crassulacean acid metabolism (CAM) was investigated in 28 succulent species growing in various habitats throughout North Carolina. Three species (Opuntia compressa^ Agave virginica, and Tillandsia usneoides) exhibited diurnal fluctuations in tissue titratable acidity, nighttime uptake of 1 4C02 , and a high carbon isotope ratio (513C), all indicators of CAM. Seven species displayed one or two characteristics of CAM in situ yet yielded lower 513C values, indicating a partial or total restriction of atmospheric CO2 uptake to the C3 photosynthetic system: Yucca gloriosa, Sesuvium maritimum, Talinum terettfolium, Diamorpha smallii, Sedum pusillum, Sedum nevii, and Sedum telephioides. Several of these species were apparently capable of utilizing the CAM pathway to fix internal respiratory CO2. The results emphasize that one photosynthetic pathway does not characterize all succulents in North Carolina

    The impact of social networks on knowledge transfer in long-term care facilities: Protocol for a study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Social networks are theorized as significant influences in the innovation adoption and behavior change processes. Our understanding of how social networks operate within healthcare settings is limited. As a result, our ability to design optimal interventions that employ social networks as a method of fostering planned behavior change is also limited. Through this proposed project, we expect to contribute new knowledge about factors influencing uptake of knowledge translation interventions.</p> <p>Objectives</p> <p>Our specific aims include: To collect social network data among staff in two long-term care (LTC) facilities; to characterize social networks in these units; and to describe how social networks influence uptake and use of feedback reports.</p> <p>Methods and design</p> <p>In this prospective study, we will collect data on social networks in nursing units in two LTC facilities, and use social network analysis techniques to characterize and describe the networks. These data will be combined with data from a funded project to explore the impact of social networks on uptake and use of feedback reports. In this parent study, feedback reports using standardized resident assessment data are distributed on a monthly basis. Surveys are administered to assess report uptake. In the proposed project, we will collect data on social networks, analyzing the data using graphical and quantitative techniques. We will combine the social network data with survey data to assess the influence of social networks on uptake of feedback reports.</p> <p>Discussion</p> <p>This study will contribute to understanding mechanisms for knowledge sharing among staff on units to permit more efficient and effective intervention design. A growing number of studies in the social network literature suggest that social networks can be studied not only as influences on knowledge translation, but also as possible mechanisms for fostering knowledge translation. This study will contribute to building theory to design such interventions.</p

    Applying the electronic nose for pre-operative SARS-CoV-2 screening

    Get PDF
    Background: Infection with SARS-CoV-2 causes corona virus disease (COVID-19). The most standard diagnostic method is reverse transcription-polymerase chain reaction (RT-PCR) on a nasopharyngeal and/or an oropharyngeal swab. The high occurrence of false-negative results due to the non-presence of SARS-CoV-2 in the oropharyngeal environment renders this sampling method not ideal. Therefore, a new sampling device is desirable. This proof-of-principle study investigated the possibility to train machine-learning classifiers with an electronic nose (Aeonose) to differentiate between COVID-19-positive and negative persons based on volatile organic compounds (VOCs) analysis. Methods: Between April and June 2020, participants were invited for breath analysis when a swab for RT-PCR was collected. If the RT-PCR resulted negative, the presence of SARS-CoV-2-specific antibodies was checked to confirm the negative result. All participants breathed through the Aeonose for five minutes. This device contains metal-oxide sensors that change in conductivity upon reaction with VOCs in exhaled breath. These conductivity changes are input data for machine learning and used for pattern recognition. The result is a value between − 1 and + 1, indicating the infection probability. Results: 219 participants were included, 57 of which COVID-19 positive. A sensitivity of 0.86 and a negative predictive value (NPV) of 0.92 were found. Adding clinical variables to machine-learning classifier via multivariate logistic regression analysis, the NPV improved to 0.96. Conclusions: The Aeonose can distinguish COVID-19 positive from negative participants based on VOC patterns in exhaled breath with a high NPV. The Aeonose might be a promising, non-invasive, and low-cost triage tool for excluding SARS-CoV-2 infection in patients elected for surgery

    Applying the electronic nose for pre-operative SARS-CoV-2 screening

    No full text
    Background Infection with SARS-CoV-2 causes corona virus disease (COVID-19). The most standard diagnostic method is reverse transcription-polymerase chain reaction (RT-PCR) on a nasopharyngeal and/or an oropharyngeal swab. The high occurrence of false-negative results due to the non-presence of SARS-CoV-2 in the oropharyngeal environment renders this sampling method not ideal. Therefore, a new sampling device is desirable. This proof-of-principle study investigated the possibility to train machine-learning classifiers with an electronic nose (Aeonose) to differentiate between COVID-19-positive and negative persons based on volatile organic compounds (VOCs) analysis. Methods Between April and June 2020, participants were invited for breath analysis when a swab for RT-PCR was collected. If the RT-PCR resulted negative, the presence of SARS-CoV-2-specific antibodies was checked to confirm the negative result. All participants breathed through the Aeonose for five minutes. This device contains metal-oxide sensors that change in conductivity upon reaction with VOCs in exhaled breath. These conductivity changes are input data for machine learning and used for pattern recognition. The result is a value between - 1 and + 1, indicating the infection probability. Results 219 participants were included, 57 of which COVID-19 positive. A sensitivity of 0.86 and a negative predictive value (NPV) of 0.92 were found. Adding clinical variables to machine-learning classifier via multivariate logistic regression analysis, the NPV improved to 0.96. Conclusions The Aeonose can distinguish COVID-19 positive from negative participants based on VOC patterns in exhaled breath with a high NPV. The Aeonose might be a promising, non-invasive, and low-cost triage tool for excluding SARS-CoV-2 infection in patients elected for surgery

    Setting the Regulatory Agenda: Statutory Deadlines, Delay, and Responsiveness

    No full text
    Congress imposes statutory deadlines in an attempt to influence agency regulatory agendas, but agencies regularly fail to meet them. What explains agency responsiveness to statutory deadlines
    corecore