37 research outputs found

    Unifying Projected Entangled Pair States contractions

    Full text link
    The approximate contraction of a Projected Entangled Pair States (PEPS) tensor network is a fundamental ingredient of any PEPS algorithm, required for the optimization of the tensors in ground state search or time evolution, as well as for the evaluation of expectation values. An exact contraction is in general impossible, and the choice of the approximating procedure determines the efficiency and accuracy of the algorithm. We analyze different previous proposals for this approximation, and show that they can be understood via the form of their environment, i.e. the operator that results from contracting part of the network. This provides physical insight into the limitation of various approaches, and allows us to introduce a new strategy, based on the idea of clusters, that unifies previous methods. The resulting contraction algorithm interpolates naturally between the cheapest and most imprecise and the most costly and most precise method. We benchmark the different algorithms with finite PEPS, and show how the cluster strategy can be used for both the tensor optimization and the calculation of expectation values. Additionally, we discuss its applicability to the parallelization of PEPS and to infinite systems (iPEPS).Comment: 28 pages, 15 figures, accepted versio

    Algorithms for finite Projected Entangled Pair States

    Full text link
    Projected Entangled Pair States (PEPS) are a promising ansatz for the study of strongly correlated quantum many-body systems in two dimensions. But due to their high computational cost, developing and improving PEPS algorithms is necessary to make the ansatz widely usable in practice. Here we analyze several algorithmic aspects of the method. On the one hand, we quantify the connection between the correlation length of the PEPS and the accuracy of its approximate contraction, and discuss how purifications can be used in the latter. On the other, we present algorithmic improvements for the update of the tensor that introduce drastic gains in the numerical conditioning and the efficiency of the algorithms. Finally, the state-of-the-art general PEPS code is benchmarked with the Heisenberg and quantum Ising models on lattices of up to 21×2121 \times 21 sites.Comment: 18 pages, 20 figures, accepted versio

    Adiabatic Preparation of a Heisenberg Antiferromagnet Using an Optical Superlattice

    Full text link
    We analyze the possibility to prepare a Heisenberg antiferromagnet with cold fermions in optical lattices, starting from a band insulator and adiabatically changing the lattice potential. The numerical simulation of the dynamics in 1D allows us to identify the conditions for success, and to study the influence that the presence of holes in the initial state may have on the protocol. We also extend our results to two-dimensional systems.Comment: 5 pages, 4 figures + Supplementary Material (5 pages, 6 figures), published versio

    Multigrid Renormalization

    Full text link
    We combine the multigrid (MG) method with state-of-the-art concepts from the variational formulation of the numerical renormalization group. The resulting MG renormalization (MGR) method is a natural generalization of the MG method for solving partial differential equations. When the solution on a grid of NN points is sought, our MGR method has a computational cost scaling as O(log(N))\mathcal{O}(\log(N)), as opposed to O(N)\mathcal{O}(N) for the best standard MG method. Therefore MGR can exponentially speed up standard MG computations. To illustrate our method, we develop a novel algorithm for the ground state computation of the nonlinear Schr\"{o}dinger equation. Our algorithm acts variationally on tensor products and updates the tensors one after another by solving a local nonlinear optimization problem. We compare several different methods for the nonlinear tensor update and find that the Newton method is the most efficient as well as precise. The combination of MGR with our nonlinear ground state algorithm produces accurate results for the nonlinear Schr\"{o}dinger equation on N=1018N = 10^{18} grid points in three spatial dimensions.Comment: 18 pages, 17 figures, accepted versio

    Barren plateaus in quantum tensor network optimization

    Full text link
    We analyze the barren plateau phenomenon in the variational optimization of quantum circuits inspired by matrix product states (qMPS), tree tensor networks (qTTN), and the multiscale entanglement renormalization ansatz (qMERA). We consider as the cost function the expectation value of a Hamiltonian that is a sum of local terms. For randomly chosen variational parameters we show that the variance of the cost function gradient decreases exponentially with the distance of a Hamiltonian term from the canonical centre in the quantum tensor network. Therefore, as a function of qubit count, for qMPS most gradient variances decrease exponentially and for qTTN as well as qMERA they decrease polynomially. We also show that the calculation of these gradients is exponentially more efficient on a classical computer than on a quantum computer.Comment: 26 pages, 7 figure

    Bosonic Fractional Quantum Hall States on a Finite Cylinder

    Full text link
    We investigate the ground state properties of a bosonic Harper-Hofstadter model with local interactions on a finite cylindrical lattice with filling fraction ν=1/2\nu=1/2. We find that our system supports topologically ordered states by calculating the topological entanglement entropy, and its value is in good agreement with the theoretical value for the ν=1/2\nu=1/2 Laughlin state. By exploring the behaviour of the density profiles, edge currents and single-particle correlation functions, we find that the ground state on the cylinder shows all signatures of a fractional quantum Hall state even for large values of the magnetic flux density. Furthermore, we determine the dependence of the correlation functions and edge currents on the interaction strength. We find that depending on the magnetic flux density, the transition towards Laughlin-like behaviour can be either smooth or happens abruptly for some critical interaction strength.Comment: 9 pages, 8 figure

    Tensor network states in time-bin quantum optics

    Full text link
    The current shift in the quantum optics community towards large-size experiments -- with many modes and photons -- necessitates new classical simulation techniques that go beyond the usual phase space formulation of quantum mechanics. To address this pressing demand we formulate linear quantum optics in the language of tensor network states. As a toy model, we extensively analyze the quantum and classical correlations of time-bin interference in a single fiber loop. We then generalize our results to more complex time-bin quantum setups and identify different classes of architectures for high-complexity and low-overhead boson sampling experiments
    corecore