8 research outputs found

    Neurobehavioral and Antioxidant Effects of Ethanolic Extract of Yellow Propolis

    Get PDF
    Propolis is a resin produced by bees from raw material collected from plants, salivary secretions, and beeswax. New therapeutic properties for the Central Nervous System have emerged. We explored the neurobehavioral and antioxidant effects of an ethanolic extract of yellow propolis (EEYP) rich in triterpenoids, primarily lupeol and β-amyrin. Male Wistar rats, 3 months old, were intraperitoneally treated with Tween 5% (control), EEYP (1, 3, 10, and 30 mg/kg), or diazepam, fluoxetine, and caffeine (positive controls) 30 min before the assays. Animals were submitted to open field, elevated plus maze, forced swimming, and inhibitory avoidance tests. After behavioral tasks, blood samples were collected through intracardiac pathway, to evaluate the oxidative balance. The results obtained in the open field and in the elevated plus maze assay showed spontaneous locomotion preserved and anxiolytic-like activity. In the forced swimming test, EEYP demonstrated antidepressant-like activity. In the inhibitory avoidance test, EEYP showed mnemonic activity at 30 mg/kg. In the evaluation of oxidative biochemistry, the extract reduced the production of nitric oxide and malondialdehyde without changing level of total antioxidant, catalase, and superoxide dismutase, induced by behavioral stress. Our results highlight that EEYP emerges as a promising anxiolytic, antidepressant, mnemonic, and antioxidant natural product

    COVID-19 outcomes in people living with HIV: Peering through the waves

    Get PDF
    Objective: To evaluate clinical characteristics and outcomes of COVID-19 patients infected with HIV, and to compare with a paired sample without HIV infection. Methods: This is a substudy of a Brazilian multicentric cohort that comprised two periods (2020 and 2021). Data was obtained through the retrospective review of medical records. Primary outcomes were admission to the intensive care unit, invasive mechanical ventilation, and death. Patients with HIV and controls were matched for age, sex, number of comorbidities, and hospital of origin using the technique of propensity score matching (up to 4:1). They were compared using the Chi-Square or Fisher's Exact tests for categorical variables and the Wilcoxon for numerical variables. Results: Throughout the study, 17,101 COVID-19 patients were hospitalized, and 130 (0.76%) of those were infected with HIV. The median age was 54 (IQR: 43.0;64.0) years in 2020 and 53 (IQR: 46.0;63.5) years in 2021, with a predominance of females in both periods. People Living with HIV (PLHIV) and their controls showed similar prevalence for admission to the ICU and invasive mechanical ventilation requirement in the two periods, with no significant differences. In 2020, in-hospital mortality was higher in the PLHIV compared to the controls (27.9% vs. 17.7%; p = 0.049), but there was no difference in mortality between groups in 2021 (25.0% vs. 25.1%; p > 0.999). Conclusions: Our results reiterate that PLHIV were at higher risk of COVID-19 mortality in the early stages of the pandemic, however, this finding did not sustain in 2021, when the mortality rate is similar to the control group

    Frequency and Burden of Neurological Manifestations Upon Hospital Presentation in COVID-19 Patients: Findings From a Large Brazilian Cohort

    Get PDF
    BACKGROUND: Scientific data regarding the prevalence of COVID-19 neurological manifestations and prognosis in Latin America countries is still lacking. Therefore, the study aims to understand neurological manifestations of SARS-CoV 2 infection and outcomes in the Brazilian population. METHODS: This study is part of the Brazilian COVID-19 Registry, a multicentric cohort, including data from 37 hospitals. For the present analysis, patients were grouped according to the presence of reported symptoms (i.e., headache; anosmia and ageusia; syncope and dizziness) vs. clinically-diagnosed neurological manifestations (clinically-defined neurological syndrome: neurological signs or diagnoses captured by clinical evaluation) and matched with patients without neurological manifestations by age, sex, number of comorbidities, hospital of admission, and whether or not patients had underlying neurological disease. RESULTS: From 6,635 hospitalized patients with COVID-19, 30.8% presented reported neurological manifestations, 10.3% were diagnosed with a neurological syndrome and 60.1% did not show any neurological manifestations. In patients with reported symptoms, the most common ones were headache (20.7%), ageusia (11.1%) and anosmia (8.0%). In patients with neurological syndromes, acute encephalopathy was the most common diagnosis (9.7%). In the matched analysis, patients with neurological syndromes presented more cases of septic shock (17.0 vs. 13.0%, p = 0.045), intensive care unit admission (45.3 vs. 38.9%, p = 0.023), and mortality (38.7 vs. 32.6%, p = 0.026; and 39.2 vs. 30.3%, p \u3c 0.001) when compared to controls. CONCLUSION: COVID-19 in-hospital patients with clinically defined neurological syndromes presented a higher incidence of septic shock, ICU admission and death when compared to controls

    Mechanical ventilation and death in pregnant patients admitted for COVID-19: a prognostic analysis from the Brazilian COVID-19 registry score

    Get PDF
    Abstract Background The assessment of clinical prognosis of pregnant COVID-19 patients at hospital presentation is challenging, due to physiological adaptations during pregnancy. Our aim was to assess the performance of the ABC2-SPH score to predict in-hospital mortality and mechanical ventilation support in pregnant patients with COVID-19, to assess the frequency of adverse pregnancy outcomes, and characteristics of pregnant women who died. Methods This multicenter cohort included consecutive pregnant patients with COVID-19 admitted to the participating hospitals, from April/2020 to March/2022. Primary outcomes were in-hospital mortality and the composite outcome of mechanical ventilation support and in-hospital mortality. Secondary endpoints were pregnancy outcomes. The overall discrimination of the model was presented as the area under the receiver operating characteristic curve (AUROC). Overall performance was assessed using the Brier score. Results From 350 pregnant patients (median age 30 [interquartile range (25.2, 35.0)] years-old]), 11.1% had hypertensive disorders, 19.7% required mechanical ventilation support and 6.0% died. The AUROC for in-hospital mortality and for the composite outcome were 0.809 (95% IC: 0.641–0.944) and 0.704 (95% IC: 0.617–0.792), respectively, with good overall performance (Brier = 0.0384 and 0.1610, respectively). Calibration was good for the prediction of in-hospital mortality, but poor for the composite outcome. Women who died had a median age 4 years-old higher, higher frequency of hypertensive disorders (38.1% vs. 9.4%, p < 0.001) and obesity (28.6% vs. 10.6%, p = 0.025) than those who were discharged alive, and their newborns had lower birth weight (2000 vs. 2813, p = 0.001) and five-minute Apgar score (3.0 vs. 8.0, p < 0.001). Conclusions The ABC2-SPH score had good overall performance for in-hospital mortality and the composite outcome mechanical ventilation and in-hospital mortality. Calibration was good for the prediction of in-hospital mortality, but it was poor for the composite outcome. Therefore, the score may be useful to predict in-hospital mortality in pregnant patients with COVID-19, in addition to clinical judgment. Newborns from women who died had lower birth weight and Apgar score than those who were discharged alive

    Clinical characteristics and outcomes of hospital-manifested COVID-19 among Brazilians

    No full text
    ABSTRACT: Objectives: To analyze the clinical characteristics and outcomes of admitted patients with the hospital- versus community-manifested COVID-19 and to evaluate the risk factors related to mortality in the first population. Methods: This retrospective cohort included consecutive adult patients with COVID-19, hospitalized between March and September 2020. The demographic data, clinical characteristics, and outcomes were extracted from medical records. Patients with hospital-manifested COVID-19 (study group) and those with community-manifested COVID-19 (control group) were matched by the propensity score model. Logistic regression models were used to verify the risk factors for mortality in the study group. Results: Among 7,710 hospitalized patients who had COVID-19, 7.2% developed symptoms while admitted for other reasons. Patients with hospital-manifested COVID-19 had a higher prevalence of cancer (19.2% vs 10.8%) and alcoholism (8.8% vs 2.8%) than patients with community-manifested COVID-19 and also had a higher rate of intensive care unit requirement (45.1% vs 35.2%), sepsis (23.8% vs 14.5%), and death (35.8% vs 22.5%) (P <0.05 for all). The factors independently associated with increased mortality in the study group were increasing age, male sex, number of comorbidities, and cancer. Conclusion: Hospital-manifested COVID-19 was associated with increased mortality. Increasing age, male sex, number of comorbidities, and cancer were independent predictors of mortality among those with hospital-manifested COVID-19 disease

    Development and validation of the MMCD score to predict kidney replacement therapy in COVID-19 patients

    No full text
    Abstract Background Acute kidney injury (AKI) is frequently associated with COVID-19, and the need for kidney replacement therapy (KRT) is considered an indicator of disease severity. This study aimed to develop a prognostic score for predicting the need for KRT in hospitalised COVID-19 patients, and to assess the incidence of AKI and KRT requirement. Methods This study is part of a multicentre cohort, the Brazilian COVID-19 Registry. A total of 5212 adult COVID-19 patients were included between March/2020 and September/2020. Variable selection was performed using generalised additive models (GAM), and least absolute shrinkage and selection operator (LASSO) regression was used for score derivation. Accuracy was assessed using the area under the receiver operating characteristic curve (AUC-ROC). Results The median age of the model-derivation cohort was 59 (IQR 47–70) years, 54.5% were men, 34.3% required ICU admission, 20.9% evolved with AKI, 9.3% required KRT, and 15.1% died during hospitalisation. The temporal validation cohort had similar age, sex, ICU admission, AKI, required KRT distribution and in-hospital mortality. The geographic validation cohort had similar age and sex; however, this cohort had higher rates of ICU admission, AKI, need for KRT and in-hospital mortality. Four predictors of the need for KRT were identified using GAM: need for mechanical ventilation, male sex, higher creatinine at hospital presentation and diabetes. The MMCD score had excellent discrimination in derivation (AUROC 0.929, 95% CI 0.918–0.939) and validation (temporal AUROC 0.927, 95% CI 0.911–0.941; geographic AUROC 0.819, 95% CI 0.792–0.845) cohorts and good overall performance (Brier score: 0.057, 0.056 and 0.122, respectively). The score is implemented in a freely available online risk calculator ( https://www.mmcdscore.com/ ). Conclusions The use of the MMCD score to predict the need for KRT may assist healthcare workers in identifying hospitalised COVID-19 patients who may require more intensive monitoring, and can be useful for resource allocation

    ABC-SPH risk score for in-hospital mortality in COVID-19 patients : development, external validation and comparison with other available scores

    No full text
    The majority of available scores to assess mortality risk of coronavirus disease 2019 (COVID-19) patients in the emergency department have high risk of bias. Therefore, this cohort aimed to develop and validate a score at hospital admission for predicting in-hospital mortality in COVID-19 patients and to compare this score with other existing ones. Consecutive patients (≥ 18 years) with confirmed COVID-19 admitted to the participating hospitals were included. Logistic regression analysis was performed to develop a prediction model for in-hospital mortality, based on the 3978 patients admitted between March-July, 2020. The model was validated in the 1054 patients admitted during August-September, as well as in an external cohort of 474 Spanish patients. Median (25-75th percentile) age of the model-derivation cohort was 60 (48-72) years, and in-hospital mortality was 20.3%. The validation cohorts had similar age distribution and in-hospital mortality. Seven significant variables were included in the risk score: age, blood urea nitrogen, number of comorbidities, C-reactive protein, SpO/FiO ratio, platelet count, and heart rate. The model had high discriminatory value (AUROC 0.844, 95% CI 0.829-0.859), which was confirmed in the Brazilian (0.859 [95% CI 0.833-0.885]) and Spanish (0.894 [95% CI 0.870-0.919]) validation cohorts, and displayed better discrimination ability than other existing scores. It is implemented in a freely available online risk calculator (https://abc2sph.com/). An easy-to-use rapid scoring system based on characteristics of COVID-19 patients commonly available at hospital presentation was designed and validated for early stratification of in-hospital mortality risk of patients with COVID-19

    ABC<sub>2</sub>-SPH risk score for in-hospital mortality in COVID-19 patients

    Get PDF
    Objectives: The majority of available scores to assess mortality risk of coronavirus disease 2019 (COVID-19) patients in the emergency department have high risk of bias. Therefore, this cohort aimed to develop and validate a score at hospital admission for predicting in-hospital mortality in COVID-19 patients and to compare this score with other existing ones. Methods: Consecutive patients (≥ 18 years) with confirmed COVID-19 admitted to the participating hospitals were included. Logistic regression analysis was performed to develop a prediction model for in-hospital mortality, based on the 3978 patients admitted between March–July, 2020. The model was validated in the 1054 patients admitted during August–September, as well as in an external cohort of 474 Spanish patients. Results: Median (25–75th percentile) age of the model-derivation cohort was 60 (48–72) years, and in-hospital mortality was 20.3%. The validation cohorts had similar age distribution and in-hospital mortality. Seven significant variables were included in the risk score: age, blood urea nitrogen, number of comorbidities, C-reactive protein, SpO2/FiO2 ratio, platelet count, and heart rate. The model had high discriminatory value (AUROC 0.844, 95% CI 0.829–0.859), which was confirmed in the Brazilian (0.859 [95% CI 0.833–0.885]) and Spanish (0.894 [95% CI 0.870–0.919]) validation cohorts, and displayed better discrimination ability than other existing scores. It is implemented in a freely available online risk calculator (https://abc2sph.com/). Conclusions: An easy-to-use rapid scoring system based on characteristics of COVID-19 patients commonly available at hospital presentation was designed and validated for early stratification of in-hospital mortality risk of patients with COVID-19.</p
    corecore