23 research outputs found

    Archaea Symbiont of T. cruzi Infection May Explain Heart Failure in Chagas Disease

    Get PDF
    Background: Archaeal genes present in Trypanosoma cruzi may represent symbionts that would explain development of heart failure in 30% of Chagas disease patients. Extracellular vesicles in peripheral blood, called exosomes (< 0.1 μm) or microvesicles (>0.1 μm), present in larger numbers in heart failure, were analyzed to determine whether they are derived from archaea in heart failure Chagas disease.Methods: Exosomes and microvesicles in serum supernatant from 3 groups were analyzed: heart failure Chagas disease (N = 26), asymptomatic indeterminate form (N = 21) and healthy non-chagasic control (N = 16). Samples were quantified with transmission electron microscopy, flow cytometer immunolabeled with anti-archaemetzincin-1 antibody (AMZ 1, archaea collagenase) and probe anti-archaeal DNA and zymography to determine AMZ1 (Archaeal metalloproteinase) activity.Results: Indeterminate form patients had higher median numbers of exosomes/case vs. heart failure patients (58.5 vs. 25.5, P < 0.001), higher exosome content of AMZ1 antigens (2.0 vs. 0.0; P < 0.001), and lower archaeal DNA content (0.2 vs. 1.5, P = 0.02). A positive correlation between exosomes and AMZ1 content was seen in indeterminate form (r = 0.5, P < 0.001), but not in heart failure patients (r = 0.002, P = 0.98). Higher free archaeal DNA (63.0 vs. 11.1, P < 0.001) in correlation with exosome numbers (r = 0.66, P = 0.01) was seen in heart failure but not in indeterminate form (r = 0.29, P = 0.10). Flow cytometer showed higher numbers of AMZ1 microvesicles in indeterminate form (64 vs. 36, P = 0.02) and higher archaeal DNA microvesicles in heart failure (8.1 vs. 0.9, P < 0.001). Zymography showed strong% collagenase activity in HF group, mild activity in IF compared to non-chagasic healthy group (121 ± 14, 106 ± 13 and 100; P < 0.001).Conclusions: Numerous exosomes, possibly removing and degrading abnormal AMZ1 collagenase, are associated with indeterminate form. Archaeal microvesicles and their exosomes, possibly associated with release of archaeal AMZ1 in heart failure, are future candidates of heart failure biomarkers if confirmed in larger series, and the therapeutic focus in the treatment of Chagas disease

    Point-of-Care Technologies for Precision Cardiovascular Care and Clinical Research

    Get PDF
    Point-of-care technologies (POC or POCT) are enabling innovative cardiovascular diagnostics that promise to improve patient care across diverse clinical settings. The National Heart, Lung, and Blood Institute convened a working group to discuss POCT in cardiovascular medicine. The multidisciplinary working group, which included clinicians, scientists, engineers, device manufacturers, regulatory officials, and program staff, reviewed the state of the POCT field; discussed opportunities for POCT to improve cardiovascular care, realize the promise of precision medicine, and advance the clinical research enterprise; and identified barriers facing translation and integration of POCT with existing clinical systems. A POCT development roadmap emerged to guide multidisciplinary teams of biomarker scientists, technologists, health care providers, and clinical trialists as they: 1) formulate needs assessments; 2) define device design specifications; 3) develop component technologies and integrated systems; 4) perform iterative pilot testing; and 5) conduct rigorous prospective clinical testing to ensure that POCT solutions have substantial effects on cardiovascular care

    Buccal Bullfrog (<i>Rana catesbeiana</i> Shaw) Oil Emulsion: A Mucoadhesive System Intended for Treatment of Oral Candidiasis

    No full text
    Oral candidiasis (OC) is an infectious disease caused by microorganisms of the genus Candida, leading to lesions in the buccal cavity. Its treatment consists of the administration of topical or systemic antifungal agents, which may compromise the patient compliance due to its side effects, highlighting the need for alternative treatments. In this scenario, bullfrog oil, an animal oil composed of a pool of saturated and unsaturated fatty acids, is introduced as a potential antifungal raw material. Thus, the aim of this work was to produce a mucoadhesive emulsified system able to deliver the bullfrog oil in the buccal cavity to treat the OC. The emulsion was produced and characterized by visual inspection, droplet size, polydispersity index (PdI), and zeta potential over the course of 60 days. In addition, its mucoadhesive ability was evaluated using an in vitro mucin model. The antifungal activity, evaluated by the broth microdilution assay and the biocompatibility, performed against human erythrocytes, were also carried out. The emulsion showed a droplet size of 320.79 &#177; 35.60 nm, a PdI of 0.49 &#177; 0.08, and a zeta potential of &#8722;38.53 &#177; 6.23 mV, with no significant changes over 60 days. The mucoadhesive properties of the system was improved by the use of pharmaceutical excipients. The antifungal activity showed that the bullfrog oil and the emulsion were able to inhibit the growth of different Candida species. Furthermore, the emulsion showed no significant hemolytic effect. Overall, the system showed suitable physicochemical characteristics and biocompatibility, with substantial in vitro antifungal activity, suggesting that this system can be further investigated for OC treatment
    corecore