44 research outputs found

    Lansoprazole and carbonic anhydrase IX inhibitors sinergize against human melanoma cells.

    Get PDF
    AbstractContext: Proton Pump Inhibitors (PPIs) reduce tumor acidity and therefore resistance of tumors to drugs. Carbonic Anhydrase IX (CA IX) inhibitors have proven to be effective against tumors, while tumor acidity might impair their full effectiveness.Objective: To analyze the effect of PPI/CA IX inhibitors combined treatment against human melanoma cells.Methods: The combination of Lansoprazole (LAN) and CA IX inhibitors (FC9-399A and S4) has been investigated in terms of cell proliferation inhibition and cell death in human melanoma cells.Results: The combination of these inhibitors was more effective than the single treatments in both inhibiting cell proliferation and in inducing cell death in human melanoma cells.Discussion: These results represent the first successful attempt in combining two different proton exchanger inhibitors.Conclusion: This is the first evidence on the effectiveness of a new approach against tumors based on the combination of PPI and CA IX inhibitors, thus providing an alter..

    Cancer acidity: An ultimate frontier of tumor immune escape and a novel target of immunomodulation

    Get PDF
    The link between cancer metabolism and immunosuppression, inflammation and immune escape has generated major interest in investigating the effects of low pH on tumor immunity. Indeed, microenvironmental acidity may differentially impact on diverse components of tumor immune surveillance, eventually contributing to immune escape and cancer progression. Although the molecular pathways underlying acidity-related immune dysfunctions are just emerging, initial evidence indicates that antitumor effectors such as T and NK cells tend to lose their function and undergo a state of mostly reversible anergy followed by apoptosis, when exposed to low pH environment. At opposite, immunosuppressive components such as myeloid cells and regulatory T cells are engaged by tumor acidity to sustain tumor growth while blocking antitumor immune responses. Local acidity could also profoundly influence bioactivity and distribution of antibodies, thus potentially interfering with the clinical efficacy of therapeutic antibodies including immune checkpoint inhibitors. Hence tumor acidity is a central regulator of cancer immunity that orchestrates both local and systemic immunosuppression and that may offer a broad panel of therapeutic targets. This review outlines the fundamental pathways of acidity-driven immune dysfunctions and sheds light on the potential strategies that could be envisaged to potentiate immune-mediated tumor control in cancer patients

    Induction of Lymphocyte Apoptosis by Tumor Cell Secretion of FasL-bearing Microvesicles

    Get PDF
    The hypothesis that FasL expression by tumor cells may impair the in vivo efficacy of antitumor immune responses, through a mechanism known as ‘Fas tumor counterattack,’ has been recently questioned, becoming the object of an intense debate based on conflicting results. Here we definitely show that FasL is indeed detectable in the cytoplasm of melanoma cells and its expression is confined to multivesicular bodies that contain melanosomes. In these structures FasL colocalizes with both melanosomal (i.e., gp100) and lysosomal (i.e., CD63) antigens. Isolated melanosomes express FasL, as detected by Western blot and cytofluorimetry, and they can exert Fas-mediated apoptosis in Jurkat cells. We additionally show that melanosome-containing multivesicular bodies degranulate extracellularly and release FasL-bearing microvesicles, that coexpress both gp100 and CD63 and retain their functional activity in triggering Fas-dependent apoptosis of lymphoid cells. Hence our data provide evidence for a novel mechanism potentially operating in Fas tumor counterattack through the secretion of subcellular particles expressing functional FasL. Such vesicles may form a sort of front line hindering lymphocytes and other immunocompetent cells from entering neoplastic lesions and exert their antitumor activity

    High Levels of Exosomes Expressing CD63 and Caveolin-1 in Plasma of Melanoma Patients

    Get PDF
    BACKGROUND: Metastatic melanoma is an untreatable cancer lacking reliable and non-invasive markers of disease progression. Exosomes are small vesicles secreted by normal as well as tumor cells. Human tumor-derived exosomes are involved in malignant progression and we evaluated the presence of exosomes in plasma of melanoma patients as a potential tool for cancer screening and follow-up. METHODOLOGY/PRINCIPAL FINDINGS: We designed an in-house sandwich ELISA (Exotest) to capture and quantify exosomes in plasma based on expression of housekeeping proteins (CD63 and Rab-5b) and a tumor-associated marker (caveolin-1). Western blot and flow cytometry analysis of exosomes were used to confirm the Exotest-based findings. The Exotest allowed sensitive detection and quantification of exosomes purified from human tumor cell culture supernatants and plasma from SCID mice engrafted with human melanoma. Plasma levels of exosomes in melanoma-engrafted SCID mice correlated to tumor size. We evaluated the levels of plasma exosomes expressing CD63 and caveolin-1 in melanoma patients (n = 90) and healthy donors (n = 58). Consistently, plasma exosomes expressing CD63 (504+/-315) or caveolin-1 (619+/-310) were significantly increased in melanoma patients as compared to healthy donors (223+/-125 and 228+/-102, respectively). While the Exotest for CD63+ plasma exosomes had limited sensitivity (43%) the Exotest for detection of caveolin-1+ plasma exosomes showed a higher sensitivity (68%). Moreover, caveolin-1+ plasma exosomes were significantly increased with respect to CD63+ exosomes in the patients group. CONCLUSIONS/SIGNIFICANCE: We describe a new non-invasive assay allowing detection and quantification of human exosomes in plasma of melanoma patients. Our results suggest that the Exotest for detection of plasma exosomes carrying tumor-associated antigens may represent a novel tool for clinical management of cancer patients

    Soma-to-Germline Transmission of RNA in Mice Xenografted with Human Tumour Cells: Possible Transport by Exosomes

    No full text
    Mendelian laws provide the universal founding paradigm for the mechanism of genetic inheritance through which characters are segregated and assorted. In recent years, however, parallel with the rapid growth of epigenetic studies, cases of inheritance deviating from Mendelian patterns have emerged. Growing studies underscore phenotypic variations and increased risk of pathologies that are transgenerationally inherited in a non-Mendelian fashion in the absence of any classically identifiable mutation or predisposing genetic lesion in the genome of individuals who develop the disease. Non-Mendelian inheritance is most often transmitted through the germline in consequence of primary events occurring in somatic cells, implying soma-to-germline transmission of information. While studies of sperm cells suggest that epigenetic variations can potentially underlie phenotypic alterations across generations, no instance of transmission of DNA- or RNA-mediated information from somatic to germ cells has been reported as yet. To address these issues, we have now generated a mouse model xenografted with human melanoma cells stably expressing EGFP-encoding plasmid. We find that EGFP RNA is released from the xenografted human cells into the bloodstream and eventually in spermatozoa of the mice. Tumor-released EGFP RNA is associated with an extracellular fraction processed for exosome purification and expressing exosomal markers, in all steps of the process, from the xenografted cancer cells to the spermatozoa of the recipient animals, strongly suggesting that exosomes are the carriers of a flow of information from somatic cells to gametes. Together, these results indicate that somatic RNA is transferred to sperm cells, which can therefore act as the final recipients of somatic cell-derived information

    Effect of Modified Alkaline Supplementation on Syngenic Melanoma Growth in CB57/BL Mice.

    No full text
    Tumor extracellular acidity is a hallmark of malignant cancers. Thus, in this study we evaluated the effects of the oral administration of a commercially available water alkalizer (Basenpulver®) (BP) on tumor growth in a syngenic melanoma mouse model. The alkalizer was administered daily by oral gavage starting one week after tumor implantation in CB57/BL mice. Tumors were calipered and their acidity measured by in vivo MRI guided 31P MRS. Furthermore, urine pH was monitored for potential metabolic alkalosis. BP administration significantly reduced melanoma growth in mice; the optimal dose in terms of tolerability and efficacy was 8 g/l (p< 0.05). The in vivo results were supported by in vitro experiments, wherein BP-treated human and murine melanoma cell cultures exhibited a dose-dependent inhibition of tumor cell growth. This investigation provides the first proof of concept that systemic buffering can improve tumor control by itself and that this approach may represent a new strategy in prevention and/or treatment of cancers

    Outline of the general procedure used for the stepwise detection of EGFP expression from tumor to sperm cells.

    No full text
    <p>An A-375 melanoma derivative cell line stably expressing the EGFP reporter gene was obtained by infecting with an engineered letiviral vector. EGFP RNA, DNA and proteins were detected both in whole A-375 cells and in A-375-released exosomes. Cells were then xenografted in nude mice, 45 days after inoculation the animals were sacrificed and both blood-released exosomes and epidydimal spermatozoa were analyzed for EGFP-containing RNA.</p
    corecore