15 research outputs found

    Geometric and kinematic analysis of faults bordering the Andaman sea continental shelves: a 3D seismic case study

    Get PDF
    To clarify the tectonic evolution of M15 block in the Andaman Sea, we perform a delicate study of fault geometry and dynamics using a 3D seismic data. The data reveal eight sequence interfaces from the Early Oligocene to the Quaternary, large scale and multi angle extensional strike-slip faults, and a series of normal faults. The two large scale faults F1 and F2 start in the Eocene and end in the Quaternary, controlling the regional structure. The NNE-SSW strike-slip F1 fault belongs to the South Sagaing fault and the NNE-SSW strike-slip F2 is the eastern Andaman fault, the strike-slip movement of which are controlled by the impact of the collision between the Indian plate and the Eurasian plate. Through the analysis of the fault development history by the method of the ancient drop and the growth index, we find that most of the large or secondary scale faults reach the maximum drop and growth index in the Miocene, indicating that the Miocene is a significant period of plate collision enhancing and faults generating. The regional stress field is dominated by E-W tension. The continental crust has expanded rapidly from the Oligocene to the Miocene which results in the rapid subsidence of the crust. This regional stress intensity becomes weak after the Miocene. The activities of the faults caused a large difference in terrain height between the west and the east in the study area, forming a pattern of the western depression and the eastern terrace. Many NNE-SSW, NE-SW or NEE-SWW trend strike-slip faults and minor faults develop in the Miocene. It echoes the event that the convergence and subduction of the Indian plate from SW to NE direction led to the right rotation and N-NNE strike-slip of the West Myanmar block in the Miocene, thus forming a regional large strike-slip fault. All of the faults affect the structure of the region

    The Paleocene Hangu formation : a key to unlocking the mysteries of Paleo-Tethys tectonism

    No full text
    DATA AVAILABILITY : Data will be made available on request.The sedimentary rocks of the Paleocene Hangu Formation in the Yadgaar Section of the Upper Indus Basin in northern Pakistan, have been the subject of an integrated field, petrographical, and sedimentological investigation. The goals of this study are to improve our understanding of the sedimentary environment, facies shifts, and the impact of tectonism on the genesis of the investigated sedimentary facies. A better understanding of the intricate relationships between the aforementioned factors will clarify whether the regional tectonic drive has partial control over or complete command of the sedimentation processes. The results of this study shows that the Hangu Formation consists of four facies: bauxite, sandstone, coal, and limestone. The bauxite deposits formed in a karst environment with severe chemical weathering in a humid to extremely humid climatic setting. Thin coal laminae indicate a peatland environment that formed within a humid tropical climate. Sub-arkose, arenite, and arkose sandstone facies mark deltaic (sub-humid), coastal–near shore (humid to hot-humid), and high-energy fluvial (arid to semi-arid) sedimentary environments, respectively. Finally, the occurrence of marly limestone points towards deposition on a shallow marine carbonate platform within a coastal-brackish environment. The facies shift of the sediments provides evidence for a gradual transition from continental to marine conditions within the study area, together with episodic transgressive and regressive cycles as well as changing climatic and geomorphological conditions. In consequence, all these changes are controlled and shaped by the effects of Paleo-Tethys tectonism during the Indo-Eurasian intra-oceanic subduction. This advancement through the current work helps in understanding tectonic-sedimentary mechanics, i.e., how regional tectono-sedimentological processes influence the formation of sedimentary sequences.The China-ASEAN Maritime Cooperation Fund Project and the National Natural Science Foundation of China.https://www.elsevier.com/locate/marpetgeo2024-09-22hj2023Geolog

    Diverse and Novel nifH and nifH-Like Gene Sequences in the Deep-Sea Methane Seep Sediments of the Okhotsk Sea▿ †

    No full text
    Diverse nifH and nifH-like gene sequences were obtained from the deep-sea surface sediments of the methane hydrate-bearing Okhotsk Sea. Some sequences formed novel families of the NifH or NifH-like proteins, of currently unresolved bacterial or archaeal origin. Comparison with other marine environments indicates environmental specificity of some of the sequences, either unique to the methane seep sediments of the Okhotsk Sea or to the general deep-sea methane seep sedimentary environments

    Global plate motion and earthquake activity

    Get PDF
    The global plate motion rates Ω are not uniform in time and space. The rotation rates were larger than 0.545°/Ma for Cocos, Philippine Sea, Pacific, Nazca, Australia, India and Arabia plates, but smaller than 0.315°/Ma. for other plates. Compared to 1997.0, the Ω values of the three oceanic plates in 2000.0 increased by, respectively, 2.4%, 2.1% and 41.7%, and the northward movement rates of the the India plate and western part of the Australia plate increased by 3.38 mm/a on the average. The spatial distribution of earthquakes was dependent on earthquake magnitude. Earthquakes of 5.0 ≤ Mw < 7.0 were located mainly in plate-margin zones and intra-plate crustal deformation zones joining the southern margin of Eurasia plate. Earthquakes of Mw ≥ 7.0 concentrated basically in the circum-Pacific and South Asia zones, but hardly in mid-ocean-ridge seismic zones. Earthquakes of Mw ≥ 8.0 were located only in the margin zones of the India, Australia, Pacific and Nazca plates orthogonal to the direction of plate motion. Compared with previous eighteen years, global earthquake activity enhanced obviously after 1994, especially after 2001. The Ω value of a plate was closely related to the activity of strong earthquakes. The largest earthquakes were located in the front-margin zones of plates having the largest Ω values. Energy released by strong earthquakes comes mainly from kinetic energy of the plates. Global seismicity enhancement was caused mainly by the acceleration of the three oceanic plates. Larger enhancement of global earthquake activity lagged behind the movement acceleration of the three oceanic plates by four years

    Environment-Dependent Distribution of the Sediment nifH-Harboring Microbiota in the Northern South China Sea

    No full text
    China NSFC [91028011, 41076091]; National Key Basic Research Program of China [2013CB955700, 2007CB411702]; Fundamental Research Funds for the Central Universities of China [09CX05005A]; U.S. NSF [0541797, 0948202]The South China Sea (SCS), the largest marginal sea in the Western Pacific Ocean, is a huge oligotrophic water body with very limited influx of nitrogenous nutrients. This suggests that sediment microbial N-2 fixation plays an important role in the production of bioavailable nitrogen. To test the molecular underpinning of this hypothesis, the diversity, abundance, biogeographical distribution, and community structure of the sediment diazotrophic microbiota were investigated at 12 sampling sites, including estuarine, coastal, offshore, deep-sea, and methane hydrate reservoirs or their prospective areas by targeting nifH and some other functional biomarker genes. Diverse and novel nifH sequences were obtained, significantly extending the evolutionary complexity of extant nifH genes. Statistical analyses indicate that sediment in situ temperature is the most significant environmental factor influencing the abundance, community structure, and spatial distribution of the sediment nifH-harboring microbial assemblages in the northern SCS (nSCS). The significantly positive correlation of the sediment pore water NH4+ concentration with the nifH gene abundance suggests that the nSCS sediment nifH-harboring microbiota is active in N-2 fixation and NH4+ production. Several other environmental factors, including sediment pore water PO43- concentration, sediment organic carbon, nitrogen and phosphorus levels, etc., are also important in influencing the community structure, spatial distribution, or abundance of the nifH-harboring microbial assemblages. We also confirmed that the nifH genes encoded by archaeal diazotrophs in the ANME-2c subgroup occur exclusively in the deep-sea methane seep areas, providing for the possibility to develop ANME-2c nifH genes as a diagnostic tool for deep-sea methane hydrate reservoir discovery

    Thaumarchaeotal Signature Gene Distribution in Sediments of the Northern South China Sea: an Indicator of the Metabolic Intersection of the Marine Carbon, Nitrogen, and Phosphorus Cycles?

    No full text
    China NSFC [91028011, 41076091, 91028001, 91028005]; National Key Basic Research Program of China [2013CB955700, 2007CB411702]; China SOA [201105021]; U.S. NSF [0541797, 0948202]; National "Thousand Talents Program" at the State Key Laboratory of Marine Geology of Tongji University, Shanghai, ChinaThaumarchaeota are abundant and active in marine waters, where they contribute to aerobic ammonia oxidation and light-independent carbon fixation. The ecological function of thaumarchaeota in marine sediments, however, has rarely been investigated, even though marine sediments constitute the majority of the Earth's surface. Thaumarchaeota in the upper layer of sediments may contribute significantly to the reservoir of nitrogen oxides in ocean waters and thus to productivity, including the assimilation of carbon. We tested this hypothesis in the northern South China Sea (nSCS), a section of a large oligotrophic marginal sea with limited influx of nutrients, including nitrogen, by investigating the diversity, abundance, community structure, and spatial distribution of thaumarchaeotal signatures in surface sediments. Quantitative real-time PCR using primers designed to detect 16S rRNA and amoA genes in sediment community DNA revealed a significantly higher abundance of pertinent thaumarchaeotal than betaproteobacterial genes. This finding correlates with high levels of hcd genes, a signature of thaumarchaeotal autotrophic carbon fixation. Thaumarchaeol, a signature lipid biomarker for thaumarchaeota, constituted the majority of archaeal lipids in marine sediments. Sediment temperature and organic P and silt contents were identified as key environmental factors shaping the community structure and distribution of the monitored thaumarchaeotal amoA genes. When the pore water PO43- concentration was controlled for via partial-correlation analysis, thaumarchaeotal amoA gene abundance significantly correlated with the sediment pore water NO2- concentration, suggesting that the amoA-bearing thaumarchaeota contribute to nitrite production. Statistical analyses also suggest that thaumarchaeotal metabolism could serve as a pivotal intersection of the carbon, nitrogen, and phosphorus cycles in marine sediments

    Deep-sea methane seep sediments in the Okhotsk Sea sustain diverse and abundant anammox bacteria

    No full text
    China 973 [2013CB955700, 2007CB411702, 2009CB219506]; NSFC [91328209, 91028011, 41076091]; China SOA [GASI-03-01-02-05]; US NSF [0541797, 0948202]Marginal sea methane seep sediments sustain highly productive chemosynthetic ecosystems and are hotspots of intense biogeochemical cycling. Rich methane supply stimulates rapid microbial consumption of oxygen; these systems are thus usually hypoxic to anoxic. This and reported evidence for resident nitrogen fixation suggest the presence of an anaerobic ammonium-oxidizing (anammox) bacterial community in methane seep sediments. To test this hypothesis, we employed detection of genes encoding 16S rRNA gene and hydrazine dehydrogenase (hzo) to investigate the structure, abundance and distribution of the anammox bacterial community in the methane seep sediments of the Okhotsk Sea. Diverse complements of Candidatus Scalindua-related 16S rRNA and hzo gene sequences were obtained. Most of the deep-sea sites harbored abundant hzo genes with copy numbers as high as 10(7)g(-1) sediment. In general, anammox bacterial signatures were significantly more abundant in the deep-water sediments. Sediment porewater NO3-, NOx- (i.e. NO3+ + NO2-), NOx-/NH4+ and sediment silt content correlated with in situ distribution patterns of anammox bacterial marker genes, likely because they determine anammox substrate availability and sediment geochemistry, respectively. The abundance and distribution of anammox bacterial gene markers indicate a potentially significant contribution of anammox bacteria to the marine N cycle in the deep-sea methane seep sediments

    The timing of collision between Asia and the West Burma Terrane, and the development of the Indo-Burma Ranges

    Get PDF
    The West Burma Terrane (WBT) is a small terrane bounded to the east by the Asian Sibumasu Block and to the west by the Indo-Burman Ranges (IBR), the latter being an exhumed accretionary prism that formed during subduction of Indian oceanic lithosphere beneath Asia. Understanding the geological history of the WBT is important for reconstruction of the closure history of the Tethys Ocean and India-Asia collision. Currently there are major discrepancies in the proposed timings of collision between the WBT with both India and Asia; whether the WBT collided with India or Asia first is debated, and proposed timings of collisions stretch from the Mesozoic to the Cenozoic. We undertook a multi-technique provenance study involving petrography, detrital zircon U-Pb and Hf analyses, rutile U-Pb analyses and Sr-Nd bulk rock analyses on sediments of the Central Myanmar Basins of the WBT. We determined that the first arrival of Asian material into the basin occurred after the earliest late Eocene and by the early Oligocene, thus placing a minimum constraint on the timing of WBT-Asia collision. Our low temperature thermochronological study of the IBR records two periods of exhumation, in the early-middle Eocene, and at the Oligo-Miocene boundary. The Eocene event may be associated with the collision of the WBT with India. The later event at the Oligo-Miocene boundary may be associated with changes in wedge dynamics resulting from increased sediment supply to the system; however a number of other possible causes provide equally plausible explanations for both events
    corecore