18 research outputs found

    Non-targeted metabolomics and lipidomics LC-MS data from maternal plasma of 180 healthy pregnant women

    Get PDF
    BACKGROUND: Metabolomics has the potential to be a powerful and sensitive approach for investigating the low molecular weight metabolite profiles present in maternal fluids and their role in pregnancy. FINDINGS: In this Data Note, LC–MS metabolome, lipidome and carnitine profiling data were collected from 180 healthy pregnant women, representing six time points spanning all three trimesters, and providing sufficient coverage to model the progression of normal pregnancy. CONCLUSIONS: As a relatively large scale, real-world dataset with robust numbers of quality control samples, the data are expected to prove useful for algorithm optimization and development, with the potential to augment studies into abnormal pregnancy. All data and ISA-TAB format enriched metadata are available for download in the MetaboLights and GigaScience databases. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13742-015-0054-9) contains supplementary material, which is available to authorized users

    Microbiome-derived bile acids contribute to elevated antigenic response and bone erosion in rheumatoid arthritis

    Full text link
    Rheumatoid arthritis (RA) is a chronic, disabling and incurable autoimmune disease. It has been widely recognized that gut microbial dysbiosis is an important contributor to the pathogenesis of RA, although distinct alterations in microbiota have been associated with this disease. Yet, the metabolites that mediate the impacts of the gut microbiome on RA are less well understood. Here, with microbial profiling and non-targeted metabolomics, we revealed profound yet diverse perturbation of the gut microbiome and metabolome in RA patients in a discovery set. In the Bacteroides-dominated RA patients, differentiation of gut microbiome resulted in distinct bile acid profiles compared to healthy subjects. Predominated Bacteroides species expressing BSH and 7a-HSDH increased, leading to elevated secondary bile acid production in this subgroup of RA patients. Reduced serum fibroblast growth factor-19 and dysregulated bile acids were evidence of impaired farnesoid X receptor-mediated signaling in the patients. This gut microbiota-bile acid axis was correlated to ACPA. The patients from the validation sets demonstrated that ACPA-positive patients have more abundant bacteria expressing BSH and 7a-HSDH but less Clostridium scindens expressing 7a-dehydroxylation enzymes, together with dysregulated microbial bile acid metabolism and more severe bone erosion than ACPA-negative ones. Mediation analyses revealed putative causal relationships between the gut microbiome, bile acids, and ACPA-positive RA, supporting a potential causal effect of Bacteroides species in increasing levels of ACPA and bone erosion mediated via disturbing bile acid metabolism. These results provide insights into the role of gut dysbiosis in RA in a manifestation-specific manner, as well as the functions of bile acids in this gut-joint axis, which may be a potential intervention target for precisely controlling RA conditions.Comment: 38 pages, 6 figure

    Genome-Wide Transcriptome and Antioxidant Analyses on Gamma-Irradiated Phases of Deinococcus radiodurans R1

    Get PDF
    Adaptation of D. radiodurans cells to extreme irradiation environments requires dynamic interactions between gene expression and metabolic regulatory networks, but studies typically address only a single layer of regulation during the recovery period after irradiation. Dynamic transcriptome analysis of D. radiodurans cells using strand-specific RNA sequencing (ssRNA-seq), combined with LC-MS based metabolite analysis, allowed an estimate of the immediate expression pattern of genes and antioxidants in response to irradiation. Transcriptome dynamics were examined in cells by ssRNA-seq covering its predicted genes. Of the 144 non-coding RNAs that were annotated, 49 of these were transfer RNAs and 95 were putative novel antisense RNAs. Genes differentially expressed during irradiation and recovery included those involved in DNA repair, degradation of damaged proteins and tricarboxylic acid (TCA) cycle metabolism. The knockout mutant crtB (phytoene synthase gene) was unable to produce carotenoids, and exhibited a decreased survival rate after irradiation, suggesting a role for these pigments in radiation resistance. Network components identified in this study, including repair and metabolic genes and antioxidants, provided new insights into the complex mechanism of radiation resistance in D. radiodurans

    LC–MS-Based Urinary Metabolite Signatures in Idiopathic Parkinson’s Disease

    No full text
    Increasing evidence has shown that abnormal metabolic phenotypes in body fluids reflect the pathogenesis and pathophysiology of Parkinson’s disease (PD). These body fluids include urine; however, the relationship between, specifically, urinary metabolic phenotypes and PD is not fully understood. In this study, urinary metabolites from a total of 401 clinical urine samples collected from 106 idiopathic PD patients and 104 normal control subjects were profiled by using high-performance liquid chromatography coupled to high-resolution mass spectrometry. Our study revealed significant correlation between clinical phenotype and urinary metabolite profile. Metabolic profiles of idiopathic PD patients differed significantly and consistently from normal controls, with related metabolic pathway variations observed in steroidogenesis, fatty acid beta-oxidation, histidine metabolism, phenylalanine metabolism, tryptophan metabolism, nucleotide metabolism, and tyrosine metabolism. In the fruit fly <i>Drosophila melanogaster</i>, the alteration of the kynurenine pathway in tryptophan metabolism corresponded with pathogenic changes in the alpha-synuclein overexpressed <i>Drosophila</i> model of PD. The results suggest that LC–MS-based urinary metabolomic profiling can reveal the metabolite signatures and related variations in metabolic pathways that characterize PD. Consistent PD-related changes across species may provide the basis for understanding metabolic regulation of PD at the molecular level

    Pregnancy-Induced Metabolic Phenotype Variations in Maternal Plasma

    No full text
    Metabolic variations occur during normal pregnancy to provide the growing fetus with a supply of nutrients required for its development and to ensure the health of the woman during gestation. Mass spectrometry-based metabolomics was employed to study the metabolic phenotype variations in the maternal plasma that are induced by pregnancy in each of its three trimesters. Nontargeted metabolomics analysis showed that pregnancy significantly altered the profile of metabolites in maternal plasma. The levels of six metabolites were found to change significantly throughout pregnancy, with related metabolic pathway variations observed in biopterin metabolism, phospholipid metabolism, amino acid derivatives, and fatty acid oxidation. In particular, there was a pronounced elevation of dihydrobiopterin (BH<sub>2</sub>), a compound produced in the synthesis of dopa, dopamine, norepinephrine, and epinephrine, in the second trimester, whereas it was markedly decreased in the third trimester. The turnover of BH<sub>2</sub> and tryptophan catabolites indicated that the fluctuations of neurotransmitters throughout pregnancy might reveal the metabolic adaption in the maternal body for the growth of the fetus. Furthermore, 11 lipid classes and 41 carnitine species were also determined and this showed variations in the presence of long-chain acylcarnitines and lysophospholipids in later pregnancy, suggesting changes of acylcarnitines and lysophospholipids to meet the energy demands in pregnant women. To our knowledge, this work is the first report of dynamic metabolic signatures and proposed related metabolic pathways in the maternal plasma for normal pregnancies and provided the basis for time-dependent metabolic trajectory against which disease-related disorders may be contrasted

    Principal component analysis of transcriptome profiling in <i>D. radiodurans</i> R1.

    No full text
    <p>A, the plot of the principal component 1 (PC1) versus principal component 2 (PC2) was presented. B, Loadings plot of PC1. C, Hierarchical clustering analyses of the selected genes that have a high correlation with PC1. D, Loadings plot of PC2. E, Hierarchical clustering analyses of the selected genes that have a high correlation with PC2.</p
    corecore