20 research outputs found

    Baseline natural killer and T cell populations correlation with virologic outcome after regimen simplification to atazanavir/ritonavir alone (ACTG 5201).

    Get PDF
    OBJECTIVES: Simplified maintenance therapy with ritonavir-boosted atazanavir (ATV/r) provides an alternative treatment option for HIV-1 infection that spares nucleoside analogs (NRTI) for future use and decreased toxicity. We hypothesized that the level of immune activation (IA) and recovery of lymphocyte populations could influence virologic outcomes after regimen simplification. METHODS: Thirty-four participants with virologic suppression ≥ 48 weeks on antiretroviral therapy (2 NRTI plus protease inhibitor) were switched to ATV/r alone in the context of the ACTG 5201 clinical trial. Flow cytometric analyses were performed on PBMC isolated from 25 patients with available samples, of which 24 had lymphocyte recovery sufficient for this study. Assessments included enumeration of T-cells (CD4/CD8), natural killer (NK) (CD3+CD56+CD16+) cells and cell-associated markers (HLA-DR, CD\u27s 38/69/94/95/158/279). RESULTS: Eight of the 24 patients had at least one plasma HIV-1 RNA level (VL) \u3e50 copies/mL during the study. NK cell levels below the group median of 7.1% at study entry were associated with development of VL \u3e50 copies/mL following simplification by regression and survival analyses (p = 0.043 and 0.023), with an odds ratio of 10.3 (95% CI: 1.92-55.3). Simplification was associated with transient increases in naïve and CD25+ CD4+ T-cells, and had no impact on IA levels. CONCLUSIONS: Lower NK cell levels prior to regimen simplification were predictive of virologic rebound after discontinuation of nucleoside analogs. Regimen simplification did not have a sustained impact on markers of IA or T lymphocyte populations in 48 weeks of clinical monitoring. TRIAL REGISTRATION: ClinicalTrials.gov NCT00084019

    Dendritic Cells Reveal a Broad Range of MHC Class I Epitopes for HIV-1 in Persons with Suppressed Viral Load on Antiretroviral Therapy

    Get PDF
    Background: HIV-1 remains sequestered during antiretroviral therapy (ART) and can resume high-level replication upon cessation of ART or development of drug resistance. Reactivity of memory CD8+ T lymphocytes to HIV-1 could potentially inhibit this residual viral replication, but is largely muted by ART in relation to suppression of viral antigen burden. Dendritic cells (DC) are important for MHC class I processing and presentation of peptide epitopes to memory CD8+ T cells, and could potentially be targeted to activate memory CD8+ T cells to a broad array of HIV-1 epitopes during ART. Principal Findings: We show for the first time that HIV-1 peptide-loaded, CD40L-matured DC from HIV-1 infected persons on ART induce IFN gamma production by CD8+ T cells specific for a much broader range and magnitude of Gag and Nef epitopes than do peptides without DC. The DC also reveal novel, MHC class I restricted, Gag and Nef epitopes that are able to induce polyfunctional T cells producing various combinations of IFN gamma, interleukin 2, tumor necrosis factor alpha, macrophage inhibitory protein 1 beta and the cytotoxic de-granulation molecule CD107a. Significance: There is an underlying, broad antigenic spectrum of anti-HIV-1, memory CD8+ T cell reactivity in persons on ART that is revealed by DC. This supports the use of DC-based immunotherapy for HIV-1 infection. © 2010 Huang et al

    Surface Phenotype and Functionality of WNV Specific T Cells Differ with Age and Disease Severity

    Get PDF
    West Nile virus (WNV) infection can result in severe neuroinvasive disease, particularly in persons with advanced age. As rodent models demonstrate that T cells play an important role in limiting WNV infection, and strong T cell responses to WNV have been observed in humans, we postulated that inadequate antiviral T cell immunity was involved in neurologic sequelae and the more severe outcomes associated with age. We previously reported the discovery of six HLA-A*0201 restricted WNV peptide epitopes, with the dominant T cell targets in naturally infected individuals being SVG9 (Env) and SLF9 (NS4b). Here, memory phenotype and polyfunctional CD8+ T cell responses to these dominant epitopes were assessed in 40 WNV seropositive patients displaying diverse clinical symptoms. The patients' PBMC were stained with HLA-I multimers loaded with the SVG9 and SLF9 epitopes and analyzed by multicolor flow cytometry. WNV-specific CD8+ T cells were found in peripheral blood several months post infection. The number of WNV-specific T cells in older individuals was the same, if not greater, than in younger members of the cohort. WNV-specific T cells were predominantly monofunctional for CD107a, MIP-1β, TNFα, IL-2, or IFNγ. When CD8+ T cell responses were stratified by disease severity, an increased number of terminally differentiated, memory phenotype (CD45RA+ CD27− CCR7− CD57+) T cells were detected in patients suffering from viral neuroinvasion. In conclusion, T cells of a terminally differentiated/cytolytic profile are associated with neuroinvasion and, regardless of age, monofunctional T cells persist following infection. These data provide the first indication that particular CD8+ T cell phenotypes are associated with disease outcome following WNV infection

    Baseline natural killer and T cell populations correlation with virologic outcome after regimen simplification to atazanavir/ritonavir alone (ACTG 5201)

    Get PDF
    Objectives: Simplified maintenance therapy with ritonavir-boosted atazanavir (ATV/r) provides an alternative treatment option for HIV-1 infection that spares nucleoside analogs (NRTI) for future use and decreased toxicity. We hypothesized that the level of immune activation (IA) and recovery of lymphocyte populations could influence virologic outcomes after regimen simplification. Methods: Thirty-four participants with virologic suppression ≥48 weeks on antiretroviral therapy (2 NRTI plus protease inhibitor) were switched to ATV/r alone in the context of the ACTG 5201 clinical trial. Flow cytometric analyses were performed on PBMC isolated from 25 patients with available samples, of which 24 had lymphocyte recovery sufficient for this study. Assessments included enumeration of T-cells (CD4/CD8), natural killer (NK) (CD3+CD56 +CD16+) cells and cell-associated markers (HLA-DR, CD's 38/69/94/95/158/279). Results: Eight of the 24 patients had at least one plasma HIV-1 RNA level (VL) <50 copies/mL during the study. NK cell levels below the group median of 7.1% at study entry were associated with development of VL <50 copies/mL following simplification by regression and survival analyses (p = 0.043 and 0.023), with an odds ratio of 10.3 (95% CI: 1.92-55.3). Simplification was associated with transient increases in naïve and CD25+ CD4+ T-cells, and had no impact on IA levels. Conclusions: Lower NK cell levels prior to regimen simplification were predictive of virologic rebound after discontinuation of nucleoside analogs. Regimen simplification did not have a sustained impact on markers of IA or T lymphocyte populations in 48 weeks of clinical monitoring. Trial Registration: ClinicalTrials.gov NCT00084019

    Maturation of dendritic cells for enhanced activation of anti-HIV-1 CD8 � T cell immunity

    No full text
    Abstract: Maturation of dendritic cells (DC) to enhance their capacity to activate T cell immunity to HIV-1 is a key step in immunotherapy of HIV-1 infection with DC. We compared maturation of DC derived from HIV-1-uninfected subjects and infected subjects on antiretroviral therapy (ART) or ART naïve by CD40 ligand (CD40L) and combinations of TLR3 ligand polyinosinic:polycytidylic acid [poly(I:C)] and inflammatory cytokines IFN-�, IFN-�, IL-1�, and TNF-�. The greatest levels of virus-specific IFN- � production by CD8 � T cells were stimulated by DC treated with CD40L, followed by DC treated with the poly(I:C)-cytokine combination. The highest levels of IL-12p70 were produced by DC treated with CD40L � IFN-�, followed by CD40L and the poly(I:C)-cytokine combination. Neutralization of IL-12p70 indicated that it was only partially involved in direct enhancement of antiviral CD8 � T cell activity. DC stimulation of antiviral CD8 � T cell reactivity was enhanced by activated CD4 � T cells at low concentrations but was suppressed at higher CD4 � T cell concentrations. Maturation of DC with CD40L obviated the need for CD4 � T cell help and overcame this suppressive activity. Finally, we showed that DC from HIV-1-infected subjects on ART, which were treated with the poly(I:C)-cytokine combination, retained the capacity to produce IL-12p70 and activate anti-HIV-1 CD8 � T cell responses after restimulation with CD40L, with or without IFN-�. Thus, DC from HIV-1-infected subjects can be engineered with CD40L or a poly(I:C)-cytokine combination for enhancing CD8 � T cell response

    Primary Human Immunodeficiency Virus Type 1-Specific CD8+ T-Cell Responses Induced by Myeloid Dendritic Cellsâ–¿

    No full text
    Induction of an antigenically broad and vigorous primary T-cell immune response by myeloid dendritic cells (DC) in blood and tissues could be important for an effective prophylactic or therapeutic vaccine to human immunodeficiency virus type 1 (HIV-1). Here we show that a primary CD8+ T-cell response can be induced by HIV-1 peptide-loaded DC derived from blood monocytes of HIV-1-negative adults and neonates (moDC) and by Langerhans cells (LC) and interstitial, dermal-intestinal DC (idDC) derived from CD34+ stem cells of neonatal cord blood. Optimal priming of single-cell gamma interferon (IFN-γ) production by CD8+ T cells required CD4+ T cells and was broadly directed to multiple regions of Gag, Env, and Nef that corresponded to known and predicted major histocompatibility complex class I epitopes. Polyfunctional CD8+ T-cell responses, defined as single-cell production of more than one cytokine (IFN-γ, interleukin 2, or tumor necrosis factor alpha), chemokine (macrophage inhibitory factor 1β), or cytotoxic degranulation marker CD107a, were primed by moDC, LC, and idDC to HIV-1 Gag and reverse transcriptase epitopes, as well as to Epstein-Barr virus and influenza A virus epitopes. Thus, three major types of blood and tissue myeloid DC targeted by HIV-1, i.e., moDC, LC, and idDC, can prime multispecific, polyfunctional CD8+ T-cell responses to HIV-1 and other viral antigens
    corecore