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Abstract

Objectives: Simplified maintenance therapy with ritonavir-boosted atazanavir (ATV/r) provides an alternative treatment
option for HIV-1 infection that spares nucleoside analogs (NRTI) for future use and decreased toxicity. We hypothesized that
the level of immune activation (IA) and recovery of lymphocyte populations could influence virologic outcomes after
regimen simplification.

Methods: Thirty-four participants with virologic suppression $48 weeks on antiretroviral therapy (2 NRTI plus protease
inhibitor) were switched to ATV/r alone in the context of the ACTG 5201 clinical trial. Flow cytometric analyses were
performed on PBMC isolated from 25 patients with available samples, of which 24 had lymphocyte recovery sufficient for
this study. Assessments included enumeration of T-cells (CD4/CD8), natural killer (NK) (CD3+CD56+CD16+) cells and cell-
associated markers (HLA-DR, CD’s 38/69/94/95/158/279).

Results: Eight of the 24 patients had at least one plasma HIV-1 RNA level (VL) .50 copies/mL during the study. NK cell levels
below the group median of 7.1% at study entry were associated with development of VL .50 copies/mL following
simplification by regression and survival analyses (p = 0.043 and 0.023), with an odds ratio of 10.3 (95% CI: 1.92–55.3).
Simplification was associated with transient increases in naı̈ve and CD25+ CD4+ T-cells, and had no impact on IA levels.

Conclusions: Lower NK cell levels prior to regimen simplification were predictive of virologic rebound after discontinuation
of nucleoside analogs. Regimen simplification did not have a sustained impact on markers of IA or T lymphocyte
populations in 48 weeks of clinical monitoring.
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Introduction

Trials of antiretroviral treatment (ART) simplification to

ritonavir-boosted protease inhibitors (PI) alone have shown mixed

success, with some trials mirroring the outcome of standard triple

therapy and others failing to show equivalence.[1,2] The criteria

for selection of patients for treatment simplification trials have

varied and include baseline CD4 T-cell counts, duration of prior

suppressive antiretroviral therapy and use of specific antiretroviral

agents, making it difficult to compare studies in order to identify

predictors of virologic outcome. Prior analyses have identified

duration of suppressive ART, low hemoglobin and poor adher-

ence as the major predictors of virologic rebound after treatment
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simplification.[3] However, these factors were not identified in all

trials, suggesting that there are other important determinants of

virologic outcomes.[1,2,4–6]

We assessed the immunologic determinants of sustained

virologic suppression in the AIDS Clinical Trials Group (ACTG)

protocol A5201. This was a prospective, open-label, single-arm

pilot trial of simplified maintenance therapy with atazanavir-

ritonavir (ATV/r) alone after prolonged virologic suppres-

sion.[7,8] At week 48, the Kaplan-Meier estimate of the

probability of virologic success was 88%.[8] Poor adherence was

only documented in 2 patients in the trial and undetectable

atazanavir levels were seen in some of the virologic failures in the

A5201 study; however, drug levels did not correlate with treatment

outcomes. [8] Studies of regimen simplification assume equal

recovery of T and natural killer (NK) cells after the CD4+ T-cell

counts have increased following antiretroviral therapy and levels of

HIV-1 RNA have been suppressed for a predetermined time

period. The A5201 study used an entry criterion of $250 CD4+ T

cells/mm3 to minimize risk of insufficient immune recovery prior

to maintenance treatment simplification, similar to other mainte-

nance simplification studies.[5,8–19] We hypothesized that the

level of immune activation and recovery of lymphocyte popula-

tions influence virologic outcomes for patients undergoing

induction-maintenance strategies. Indeed, virologic failure of

lopinavir/ritonavir (LPV/r) monotherapy was associated with

low nadir CD4+ T cell counts and suboptimal medication

adherence.[3] In a Swiss study, low nadir CD4+ T cell counts

were also associated with virologic failure, but in patients that had

only been suppressed for 3 months prior to treatment simplifica-

tion to LPV/r alone.[20] Additionally, trials of treatment

simplification have noted increased number of events of HIV-1

viremia above 50 copies/mL as compared to continued combi-

nation therapy, which may lead to an increase risk of virologic

failure and emergence of antiretroviral resistance.[23,24]

Our study therefore assessed the immune profile of patients

before regimen simplification, the impact of regimen simplification

on the T and NK cell populations and immune activation, and

whether these immunologic parameters correlated with levels of

residual viremia, measured by single copy assay, and detectable

viremia above 50 copies/mL.

Materials and Methods

Study population
The Institutional Review Boards of all the participating and

enrolling institutions listed in the acknowledgements approved the

A5201 study and each participant provided written informed

consent, these include: the University of Colorado Health Sciences

Center, Duke University, Stanford University, the University of

Nebraska Medical Center, Weill-Cornell Medical College, the

University of Pittsburgh, the University of Cincinnati, the

University of Hawaii–Manoa, the University of Iowa, the

University of North Carolina–Chapel Hill, the University of

Texas–Southwestern Medical Center, and the University of

Puerto Rico. Thirty-four participants underwent regimen simpli-

fication to ATV/r during the A5201 study. Participants included

in the study were receiving a protease inhibitor plus at least 2

NRTIs with plasma HIV-1 RNA suppression below 50 copies/

mL for at least 48 weeks immediately prior to study entry.[7] Four

participants experienced virologic failure by protocol definition

(defined as 2 consecutive plasma HIV-1 RNA levels $ 200 cop-

ies/mL) at weeks 12, 14, 20 and 28 after simplification. None of

these virologic failures developed PI resistance either by standard

genotyping or by single genome sequencing.[8] The virologic

failures were restarted on triple combination therapy and

remained on study until week 54. Of the 34 patients, 25

participants had available cryopreserved PBMC samples for flow

cytometry testing, which were collected at entry, and weeks 6, 18,

30 and 54. The 25 participants with available PBMCs did not

differ in age, race, nadir or baseline CD4 T cell count, and had

been virologically suppressed on average for the same duration as

the full study cohort (data not shown). At each time point, 206106

peripheral blood mononuclear cells (PBMC) were obtained and

stored at 2140uC. Of the 25 patients with available PBMC

samples, one was excluded from the analyses due to poor sample

quality (,10% viable PBMC from expected). Most of the PBMC

samples were collected at the same timepoints as the HIV-1 viral

load samples. All virologic failures as defined in the A5201 clinical

trial had available PBMCs and underwent flow cytometry

analyses. Clinical trial data including virologic outcomes, CD4

nadir and HIV-1 RNA levels were included in our analyses to

assess for potential impact on outcomes or in immune parameters.

In all participants, HIV-1 RNA levels were measured with the

Roche Amplicor Cobas v1.5 assay. To assess the impact of

treatment simplification on HIV-1 residual viremia in patients

with long standing HIV-1 suppression, the single copy assay

(SCA), having a limit of detection of 1.1 copies/mL as reported by

Palmer et al, was used in a subset of 13 participants, which

included all 4 participants with study defined virologic failure and

9 participants who had been previously amplified efficiently by

SCA in a prior study.[21,22] In this analysis, we will examine the

correlation of persistent HIV-1 residual viremia with immune

activation and cell population parameters.

Prior studies of PI monotherapy/simplification using lopinavir/

ritonavir have shown an increased prevalence of detectable HIV-1

RNA above 50 copies/mL; persistently detectable HIV-1 RNA

levels may potentially lead to virologic failure and emergence of

HIV resistance.[23,24] Therefore, we have used as criteria for

Figure 1. Baseline NK Cell percentages by HIV-1 RNA Outcome
following Regimen Simplification. Figure 1 compares the baseline
NK cell levels, defined by CD3-CD56+CD16+ cells, and virologic
outcome (HIV-1 RNA below or above 50 copies/mL, throughout the
study). The circles represent each study participant with either
sustained HIV-1 RNA suppression during the trial and those participants
who developed detectable viremia following treatment simplification.
The difference in the median NK cell levels between the groups with
detectable and suppressed viremia was statistically significant with a p-
value of 0.002. The median level is noted by the line in the scatterplot
for each group.
doi:10.1371/journal.pone.0095524.g001
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detectable HIV-1 RNA any value above 50 copies/mL, which is

different from the protocol defined virologic failure of confirmed

HIV-1 RNA levels above 200 copies/mL. Eight of the 24

participants tested by flow cytometry had at least one timepoint

with HIV-1 RNA .50 copies/mL during the trial, 3 with single, 2

with two consecutive and 3 with multiple detectable timepoints.

Seventeen participants had no HIV-1 RNA .50 copies/mL

during the trial. We compared immune parameters between the

participants with undetectable versus detectable HIV-1 RNA

viremia levels during the study.

Flow cytometric analyses
PBMC samples collected as part of the A5201 protocol at entry,

weeks 6, 18, 30 and 54 were used for the analyses. We expanded

the flow cytometry testing to include both T cell and NK cell

populations, as the latter is associated with early viremic control

and may contribute to the control of HIV-1 viremia in patients on

ART. The impact of the NK cell population on HIV-1 residual

viremia has not been previously evaluated. Cryopreserved PBMC

samples were thawed and cell viability was determined using a Vi-

CELL analyzer (Beckman Coulter, California) with a target of $

75% viability for each sample to be used for testing. For each

timepoint, 1.56106 cells were incubated in FACS buffer contain-

ing 2%BSA and 0.1% NaN3 along with appropriate combinations

of antibodies for 30 minutes following manufacturer’s recommen-

dations. The cells were then washed and resuspended in FACS

buffer. Flow cytometry data was immediately acquired by using

the LSR II flow cytometer (BD Biosciences), in accordance to the

manufacturer’s instructions. The antibodies used were purchased

from BD Biosciences (CD3-PB, anti-CD4-AF700, anti-CD45RO-

PE, anti-CD27-FITC, anti-CD69-PC-7, anti-CCR7-APC-AF700,

anti-CD38-PERCY5,5, anti-HLADR-APC-H7, anti-CD25-APC,

anti-CD95-FITC, anti-PD1-PE, and anti-CD69-PC7, anti-CD16-

PERCY5,5, anti-CD158a-FITC, anti-CD158b-PE, anti-CD94-

APC, and anti-CD69-PC7), Beckman-Coulter (anti-CD8-ECD),

eBioscience (anti-CCR7-APC-AF700) and BioLegend (anti-CD56-

AF700). Additional negative controls were included for each

sample during staining and acquisition steps. The parent cells were

the CD3+ T cell lymphocytes for our analyses and all other T and

NK cell percentages are based from this parent population. A gate

was set on the population of singlet events as determined by the

linear relationship between forward scatter height and area. This

was followed by a gate on the live population of lymphocytes based

on forward and side scatter light properties. The CD56 and CD3

parameters were plotted, and a gate was set on the NK cells based

on their classical definition of being CD56+/CD3- lymphocytes.

All flow cytometry gating and data were reviewed by both flow

cytometry technicians (two) and by the principal investigator to

confirm the validity of the samples, the gating strategy and the

final numbers, prior to inclusion into the final data set.

Statistics
All statistical analyses were performed using SPSS statistics 20

(IBM). Sample size was limited to patients participating in the

A5201 single arm study with available PBMC samples for

analyses. We used both parametric analyses including means test,

t-test, and non-parametric analyses including median test, the

Mann-Whitney-U, mixed model analyses, and Cox multivariate

regression analysis and cumulative survival analyses. Both

parametric and non-parametric test were used as appropriate.

Univariate analyses were used to examine potential predictors of

sustained virologic suppression with p-values # 0.1 which were

subsequently analyzed using both forward and backward multi-

variate regression analysis. Multivariate analyses was used to
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determine if any of the factors were true predictors of virologic

outcome and to eliminate any potential bias or confounding of

multiple comparisons/repeated testing producing a false positive

finding.[25] We reported the highest significant p-value for the

significant variables when examining both the multivariate

forward and backward regressions analyses. Statistical significance

was defined as P-values ,0.05, using a 2-tailed test for

multivariate analyses.

Results

Baseline immunologic parameters
Participants entering the study had a median CD4+ T cell count

of 616 (range: 443–756) cells/mm3. We compared the baseline T

and NK cell parameters between participants maintaining HIV-1

RNA suppression and those who did not (HIV-1 RNA .

50 copies/mL). At baseline, the CD4+ and CD8+ T cell

populations were similar for naı̈ve, central memory, effector

memory and CD25+ T cells between participants who maintained

suppression of HIV-1 RNA and those with detectable HIV-1 RNA

(all p-values were non-significant, Table 1). Nadir CD4 cell counts

did not correlate with virologic outcomes of detectable HIV-1

RNA above 50 copies/mL or with the assessed immune

parameters in multivariable analyses. However, the percentage

of CD32 cells that expressed CD56+ was significantly higher in

participants with undetectable viremia versus those with detectable

levels with a mean of 30.6% versus 13.6% (p = 0.03), and for co-

expression of CD56+CD16+ with mean value of 11.5% versus

3.2% (p,0.01). T cells expressing NK cell associated marker

CD56+ cell levels were also higher in participants with sustained

viral load (VL) suppression as compared to participants with

detectable VL, with median values of 7.2% versus 4.3% (p,0.01)

(Table 1, Figure 1). NK cell baseline differences were statistically

significant in both univariate and multivariate analyses including

Cox regression (Table 2). Higher NK cell population levels

correlated in our analyses with sustained HIV suppression

following treatment simplification.

Significant differences in T cell immune activation at baseline

were seen between the two groups. CD4+CD38+HLADR+,

CD8+CD69+, and CD32CD56+CD69+ percentages were higher

in the participants whose HIV-1 RNA levels remained suppressed

below 50 copies/mL during the study. In comparison of

participants with undetectable versus detectable viremia, the

median percentages for CD4+HLADR were 13.6% vs. 4.2%

(p = 0.01), CD4+CD69+ were 12.2% versus 6.3% (p = 0.02),

Table 2. Univariate and Multivariate Regression Analysis of Baseline T and NK Cell Populations and Immune Activation Markers
and the Risk of Detectable Plasma HIV-1 RNA.

Cox Regression Analysis

Cell Markers Univariate (p-value) Univariate OR (95% CI) Multivariate (p-value) Final OR (95% CI)

CD4+ CD69+ 0.071 13.2 (1.24–140.69) NS

CD4+ DR+ 0.093 4.2 (0.60–28.62) NS

CD4+ CD38+ DR+ 0.039 13.2 (1.24–140.69) NS

CD8+ CD69+ 0.033 4.2 (0.60–28.62) NS

CD8+ DR+ 0.045 13.2 (1.24–140.69) NS

CD8+ CD279+ 0.1 0.13 (0.01–1.34) NS

CD3+ CD56+ 0.012 13.2 (1.24–140.69) NS

CD32 CD56+ 0.033 13.2 (1.24–140.69) NS

CD32 CD56+ CD16+ 0.007 13.2 (1.24–140.69) 0.043 10.3 (1.92–55.3)

CD32 CD56+ CD69+ 0.053 4.2 (0.60–28.62) 0.055

CD32 CD56+ CD158a+ 0.093 1.71 (0.29–10.30) NS

Cox regression analyses included all variables with p-values #0.1 in the univariate analyses, and age, race and CD4 nadir prior to starting ART. Odds ratio above 1.0 are
associated with increased risk of virologic failure.
doi:10.1371/journal.pone.0095524.t002

Figure 2. Proportions with HIV-1 RNA , 50 copies/ml after
regimen simplification by baseline NK cell levels. Figure 2 shows
a Kaplan-Meier plot for the survival with HIV-1 RNA level above
50 copies/mL during the A5201 study based on the participant’s NK cell
level at study entry. The p-value is 0.023 by Kaplan-Meier analyses for
the difference at 54 weeks between the groups above and below the
median NK cell level.
doi:10.1371/journal.pone.0095524.g002

NK Cell Populations & HIV Virologic Outcomes

PLOS ONE | www.plosone.org 5 May 2014 | Volume 9 | Issue 5 | e95524



CD4+CD38+HLADR+ were 3.6% versus 1.20% (p = 0.07),

CD8+HLADR+ were 16.8% versus 6.1% (p,0.01), CD8+CD69+

were 8.4% versus 3.7% (p = 0.03) and for CD56+CD69+ were

27.0% versus 15.9% (p = 0.04) (Table 1). The lower T cell immune

markers may represent early migration of activated T cells from

peripheral circulation to the tissues where active HIV replication is

ongoing in participants with detectable viremia.

Association of baseline immunologic status with
virological outcome

Cox univariate regression analyses of baseline immunologic

parameters as continuous variables were performed to assess for

any associations with the development of detectable HIV-1 RNA

levels above 50 copies/mL. Only 9 of the T or NK cell

populations or immune activation parameters analyzed had a p-

value of #0.1 in univariate regression, including CD4+CD69+,

CD4+CD38+HLA-DR+, CD8+HLA-DR+, CD8+CD69+,

CD8+CD279+, CD3+CD56+, CD32CD56+, CD32CD56+CD16+,

CD32CD56+CD69+ and CD32CD56+CD158a+. These immu-

nologic variables were included in a multivariable regression

analysis with forward and backward regression. We also included

participant demographic characteristics, including age and race,

and nadir CD4+ T cell count prior to start of antiretroviral

treatment. Only one parameter-population remained in the

model, CD32CD56+CD16+, with a p-value of 0.043 in forward

regression and 0.034 in backwards regression analyses. NK cells

expressing the CD69+ cell-associated marker of early activation

did not remain in the model but the p-value neared statistical

significance at 0.055 (Table 2). Cumulative survival analyses of the

impact of NK cells levels, as a dichotomous variable, determined

that participants with NK cell levels above the median of 7.1%

had reduced risk of developing detectable HIV-1 viremia above

50 copies/mL as compared to those with NK cell levels below the

median (p = 0.023) (Figure 2). The odds ratio of detectable HIV-1

RNA viremia in participants with low NK cell levels was 10.3

(95% CI: 1.92 to 55.3). Independent of baseline levels of immune

activation and other T cell populations, the baseline NK cell level

was the only predictive marker of detectable HIV-1 viremia in

multivariate regression following treatment simplification. Inter-

estingly, CD8+CD38+HLA-DR+ levels were statistically signifi-

cantly different at week 30 of the study in participants with and

without detectable viremia (p = 0.034) but the difference was not

present by week 54 (p = 0.67).

Correlation of T and NK cell populations and Immune
Activation (IA) Markers with HIV-1 RNA levels

Levels of T and NK cell populations and immune activation

markers were analyzed with HIV-1 RNA levels using both the

Single Copy Assay (SCA) and/or the Roche Amplicor v1.5 assay.

During the trial, blood samples with detectable HIV-1 RNA levels

below 50 copies/mL by SCA correlated with higher NK cells

expressing CD158b+ and CD94+ markers (r = 0.455 & 0.375, p-

values = 0.006 & 0.027, respectively). Other parameters were not

significantly correlated (data not shown).

When comparing samples with HIV-1 RNA levels 50–

99 copies/mL to those below 50 copies/mL by Roche Amplicor

v1.5, we determined that the higher viral load group had lower

median levels of CD4+CD45RO+CCR7+CD272 (0.1% vs. 0.4%,

p = 0.018), CD8+CD38+HLA-DR+ (1.3% vs. 1.8%, p = 0.013),

NK cells CD32CD56+CD16+ (4.6% vs. 11.5%, p = 0.036) and

CD56+CD94+ (38.3% vs. 59%, p = 0.005), in univariate analyses

(Figure 3). Other T and NK cell populations and IA markers were

not significantly different when compared at different HIV viral

load levels. In multivariate analyses, only NK cell levels remained

significant with detectable viremia (Table 2).

Impact of treatment simplification on T and NK cell
populations and IA

Comparisons of the T and NK cell populations and levels of IA

markers before and after treatment simplification revealed no

impact of treatment simplification on the immune parameters

examined. Participants with suppressed viremia during the study

tended to have an increase in the percentage of CD4+CD25+ cells

with treatment simplification (p = 0.08), but by study week 54 the

levels were similar to baseline (p = ns). The

CD4+CD45RO+CCR7+CD272 cell population also showed a

trend to increase following simplification in the participants with

Figure 3. Comparison of NK cells and T cell populations based on HIV-1 viremia below and above 50 copies/mL. Figure 3
demonstrates that the population percentage of CD3-CD56+CD16+ cells (panel 1) and CD4-CD45RO+CCR7+CD27- cells (panel 2) were decreased in
samples with HIV-1 RNA levels of 50–99 copies/mL as compared to samples obtained with HIV-1 RNA below 50 copies/mL with p-values of 0.036 and
0.018, respectively. The median level for each cell population is indicated by the line in the scatterplot for each group.
doi:10.1371/journal.pone.0095524.g003
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suppressed viremia during the study but did not reach statistical

significance (p = 0.073). No statistically significant difference was

seen in immune activation levels following treatment simplification

in either outcome group. All other T and NK cell markers were

not statistically associated with treatment simplification (all p-

values .0.08 (data not shown).

Discussion

We examined the impact of baseline T and NK cell populations

and markers of immune activation on virologic outcomes following

regimen simplification to atazanavir/ritonavir alone. In addition,

the impact of regimen simplification on immunologic parameters

was investigated. Our study is the first to measure a possible

predictive value of baseline NK cell levels for virologic outcome.

Participants with NK cell levels below the median had 10 times

higher risk of developing HIV-1 RNA levels above 50 copies/mL

during the study. The difference in NK cell levels was seen in our

study group while patients were still on their original combination

antiretroviral therapy and before any intervention had occurred.

Increased incidence of detectable viremia above 50 copies/mL has

been reported in other trials of treatment simplification strategies

and has led to a concern for increased risk of virologic failure and

possible development of drug resistance mutations. [16,23,24,26]

Therefore, understanding the immunologic control of low level

viremia in participants undergoing treatment simplification and

selecting a stricter 50 copies/mL threshold was considered to be

more informative than using the study defined confirmed virologic

failure above 200 copies/mL for our analyses.

The NK cell levels and immune activation marker differences at

baseline demonstrate that despite prolonged HIV-1 RNA

suppression on antiretroviral therapy, participants had significant

differences in immunologic parameters at entry into the study.

Therefore the immune status of patients entering HIV clinical

trials as currently assessed by CD4+ T cell levels prior to study

entry does not provide a complete assessment of functional

immune status reconstitution, and duration of HIV-1 RNA

suppression may not be sufficient as an entry criterion for trials

of maintenance therapy. Other parameters that were associated

with detectable HIV-1 viremia at some point during the study

included markers of immune activation HLA-DR and CD38,

which could be indicators of undetected viral replication and/or

ongoing inflammation, and in turn impact treatment outcomes.

These markers reached statistical significance in univariate

analyses but did not remain in the model as significant factors in

multivariate analyses, possibly due to the limited sample size of our

study. Larger studies are needed to further evaluate if the cell

markers not retained in the regression models were affected by the

limited sample size and have a significant impact on ART

treatment responses.

Regimen simplification to atazanavir/ritonavir was not found to

be an independent predictor of changes in either T or NK cell

populations or on the levels of immune activation markers. We

observed initial gains in CD4+ naı̈ve and CD4+CD25+ T cells in

participants with virologic suppression during the trial but the

differences were not sustained after 48 weeks of simplification. In

the OK04 trial regimen simplification to LPV/r was associated

with a modest increase in CD4+ T cells at 48 weeks.[6] CD4+ T

cells increases were not detected in our study as previously

reported.[8]

HIV-1 residual viremia below 50 copies/mL and low level

viremia between 50–100 copies/mL were associated with distinct

changes in immune cell populations and activation markers. NK

cell CD158b+ and CD94+ surface cell markers tended to increase

with rising residual viremia by SCA. Once the HIV-1 RNA levels

were between 50–99 copies/mL, then CD4+ central memory T

cells, NK cells and markers of inflammation tended to decrease as

compared to samples from participants with suppressed HIV-1

RNA levels. These paradoxical decreases in markers of inflam-

mation could be related to migration of activated cells from the

circulation to the periphery as HIV-1 viral replication expands.

These findings may be relevant as we monitor patients with low

level detectable viremia or viral blips, as these could signify that

the low level increase in plasma HIV-1 RNA is due to actual

replication instead of assay variability.

Both the innate and adaptive immune systems have a role in the

host response against HIV-1 viral replication. Initial viremia

control in acute infection is achieved by cytotoxic activity of CD8+

T and NK cell responses.[27,28] NK cells are known to be

involved in both the early antiviral response to HIV-1 infection

and represent an important part of innate and possibly adaptive

immune response to control HIV-1 viral replication.[27–32]

Concomitant CD4+ and CD8+ T cell responses to Gag peptides

and NK cell responses to Env and Reg peptides have been

correlated with improved viremia control and higher CD4+ T cell

counts.[33] NK cell responses to HIV-1 peptides have been

demonstrated to persist even in absence of CD4+ and CD8+ T cell

responses.[33] NK cell population levels and the phenotypic

changes identified in our study suggest a more robust role of these

cells in functional and cytotoxic activities related to control of

HIV-1 replication in patients with detectable viremia below

50 copies/mL. Prior studies have shown that either changes in

NK cell phenotype or functionality can impact HIV-1 viral control

when assessed in long-term non-progressors and HIV-1 control-

lers.[34,35] Decreases in CD56bright subsets, NKp30 and NKp46

expression in NK cells have been associated with reduced

activation and cytotoxic activity with progressive HIV-1 infec-

tion.[36–39] NK cell exhaustion may also be associated with

decreased viremic control, as HIV controllers expressed normal

Siglec-7 levels as compared to HIV-1 progressors.[40] Similarly,

PBMCs obtained from of long term non-progressors show normal

to low expression of different inhibitory natural killer receptors

(iNKR) in CD3+CD8+ CTL cells and lack of inhibition of HIV-1

specific cytotoxic activity by iNKR in vitro suggesting that

normalized receptor expression may be needed for on-going

anti-HIV cytotoxic activity.[41] Virologic failure may be as

dependent on the host innate immune responses beyond just

CD4+ T cell recovery as it is on regimen potency.

The A5201 study was designed as a single arm study, which

limits our ability to compare our results to control participants not

undergoing treatment simplification. SCA HIV-1 viral load data

are also limited to 13 participants who were known to have

amplifiable HIV-1 gag sequences, limiting the depth of the

analyses below 50 copies/mL. Low level detectable HIV-1 viremia

above 50 copies/mL seen in this study may represent either new

full rounds of replications due to incomplete suppression or viral

shedding from previously infected cells. In the A5201 study, no PI

resistance mutations were detected by either standard or single

genome sequencing to support possible viral evolution and

therefore new rounds of replication. Poor medication adherence

will impact virologic rebound and was documented in at least two

A5201 study participants. However, most study participants

indicated good medication adherence during the trial and had

been suppressed for longer to 12 months prior to study entry.[8]

Atazanavir drug levels were evaluated in the original study but

were not correlated with virologic outcomes, except if no level was

detected (data not shown). Study medication adherence is unlikely

to have impacted baseline T and NK populations prior to study
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intervention, unless inconsistent medication adherence had been

unrecognized prior to study entry and had not resulted in virologic

rebound. Due to the original study sample size and sample

availability, our final sample size is relatively small and some of the

variables tested may not have reached statistical significance due to

a type B error. Larger studies will be needed to further assess our

study results and elucidate the impact of other immunologic

parameters on HIV-1 viremic control. The strength of our study,

however, lies in the depth and robustness of the immunologic flow

cytometric analyses which included T and NK cells, together with

correlation with clinical outcomes and HIV-1 RNA levels from

both single copy assay and standard viral load testing.

In summary, this study demonstrates that patients on suppres-

sive ART for similar timeframes have distinct immune cell

populations and levels of cellular activation, despite CD4+ T cell

counts on average above 600 cells/mm3, and even after adjusting

for nadir CD4+ T cell counts. Different levels of immune

reconstitution and activation may explain the differences in

treatment outcomes in trials of maintenance regimen simplifica-

tion, and could explain why some patients may not require triple

combination therapy to maintain HIV-1 suppression. Future trials

of maintenance therapy strategies should include more in-depth

immune assessments to further confirm these findings and better

understand the relationship between the NK cell populations and

other immune markers and treatment outcomes. Baseline assess-

ment of NK cell levels and immune activation markers could

provide information for early detection of patients at increased risk

of virologic failure.
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