11 research outputs found

    The Evaluation of Carrageenan as a Novel and Environmentally Friendly Molybdenite Depressant

    No full text
    In order to achieve the effective separation of copper-molybdenum in the presence of xanthate and kerosene, carrageenan was explored as a novel environmentally friendly molybdenite depressant in this work. The flotation behavior of molybdenite was studied by micro-flotation tests, and the depression mechanism was investigated through zeta potential, Fourier Transform Infrared Spectroscopy (FTIR) and atomic force microscope (AFM) analysis. The flotation results showed that molybdenite was significantly depressed by carrageenan in the pH range of 6–12 even in the presence of xanthate and kerosene. Zeta potential, FTIR and AFM measurement demonstrated that carrageenan could adsorb strongly on the molybdenite surface and change the surface wettability of molybdenite, thus significantly reducing the floatability of molybdenite

    Investigation on a Novel Galena Depressant in the Flotation Separation from Molybdenite

    No full text
    In this study, a novel organic depressant maleyl 5-amino-1,3,4-thiadiazole-2-thiol (MATT) was synthesized and utilized as a galena depressant in the flotation separation of molybdenite and galena. The results of the flotation test indicated that MATT exhibited an excellent depression ability on galena but barely influenced the flotation of molybdenite in the pH range of 6.0–11.0. Zeta potential results suggested that MATT preferentially adsorbed on galena surface. UV-visible spectroscopy analysis indicated that the stoichiometric ratio of lead ion and reagent in the complex compound. XPS analysis demonstrated that the S (-SH) atom and N (1,3,4-thiadiazole group) atom of MATT coordinated with the Pb atom on galena surface

    Long-term acupuncture treatment has a multi-targeting regulation on multiple brain regions in rats with Alzheimer’s disease : a positron emission tomography study

    No full text
    The acute effect of acupuncture on Alzheimer’s disease, i.e., on brain activation during treatment, has been reported. However, the effect of long-term acupuncture on brain activation in Alzheimer’s disease is unclear. Therefore, in this study, we performed long-term needling at Zusanli (ST36) or a sham point (1.5 mm lateral to ST36) in a rat Alzheimer’s disease model, for 30 minutes, once per day, for 30 days. The rats underwent 18F-fluorodeoxyglucose positron emission tomography scanning. Positron emission tomography images were processed with SPM2. The brain areas activated after needling at ST36 included the left hippocampus, the left orbital cortex, the left infralimbic cortex, the left olfactory cortex, the left cerebellum and the left pons. In the sham-point group, the activated regions were similar to those in the ST36 group. However, the ST36 group showed greater activation in the cerebellum and pons than the sham-point group. These findings suggest that long-term acupuncture treatment has targeted regulatory effects on multiple brain regions in rats with Alzheimer’s disease

    Acupuncture regulates the glucose metabolism in cerebral functional regions in chronic stage ischemic stroke patients---a PET-CT cerebral functional imaging study

    No full text
    Abstract Background Acupuncture has been applied to aid in the recovery of post-stroke patients, but its mechanism is unclear. This study aims to analyze the relationship between acupuncture and glucose metabolism in cerebral functional regions in post-stroke patients using 18 FDG PET-CT techniques. Forty-three ischemic stroke patients were randomly divided into 5 groups: the Waiguan (TE5) needling group, the TE5 sham needling group, the sham point needling group, the sham point sham needling group and the non-needling group. Cerebral functional images of all patients were then acquired using PET-CT scans and processed by SPM2 software. Results Compared with the non-needling group, sham needling at TE5 and needling/sham needling at the sham point did not activate cerebral areas. However, needling at TE5 resulted in the activation of Brodmann Area (BA) 30. Needling/sham needling at TE5 and needling at the sham point did not deactivate any cerebral areas, whereas sham needling at the sham point led to deactivation in BA6. Compared with sham needling at TE5, needling at TE5 activated BA13, 19 and 47 and did not deactivate any areas. Compared with needling at the sham point, needling at TE5 had no associated activation but a deactivating effect on BA9. Conclusion Needling at TE5 had a regulating effect on cerebral functional areas shown by PET-CT, and this may relate to its impact on the recovery of post-stroke patients.</p

    Metformin escape in prostate cancer by activating the PTGR1 transcriptional program through a novel super-enhancer

    No full text
    Abstract The therapeutic efficacy of metformin in prostate cancer (PCa) appears uncertain based on various clinical trials. Metformin treatment failure may be attributed to the high frequency of transcriptional dysregulation, which leads to drug resistance. However, the underlying mechanism is still unclear. In this study, we found evidences that metformin resistance in PCa cells may be linked to cell cycle reactivation. Super-enhancers (SEs), crucial regulatory elements, have been shown to be associated with drug resistance in various cancers. Our analysis of SEs in metformin-resistant (MetR) PCa cells revealed a correlation with Prostaglandin Reductase 1 (PTGR1) expression, which was identified as significantly increased in a cluster of cells with metformin resistance through single-cell transcriptome sequencing. Our functional experiments showed that PTGR1 overexpression accelerated cell cycle progression by promoting progression from the G0/G1 to the S and G2/M phases, resulting in reduced sensitivity to metformin. Additionally, we identified key transcription factors that significantly increase PTGR1 expression, such as SRF and RUNX3, providing potential new targets to address metformin resistance in PCa. In conclusion, our study sheds new light on the cellular mechanism underlying metformin resistance and the regulation of the SE-TFs-PTGR1 axis, offering potential avenues to enhance metformin’s therapeutic efficacy in PCa

    A HIF1α-GPD1 feedforward loop inhibits the progression of renal clear cell carcinoma via mitochondrial function and lipid metabolism

    No full text
    Abstract Background Hypoxia signaling, especially the hypoxia inducible factor (HIF) pathway, is a major player in clear cell renal cell carcinoma (ccRCC), which is characterized by disorders in lipid and glycogen metabolism. However, the interaction between hypoxia and lipid metabolism in ccRCC progression is still poorly understood. Methods We used bioinformatic analysis and discovered that glycerol-3-phosphate dehydrogenase 1 (GPD1) may play a key role in hypoxia and lipid metabolism pathways in ccRCC. Tissue microarray, IHC staining, and survival analysis were performed to evaluate clinical function. In vitro and in vivo assays showed the biological effects of GPD1 in ccRCC progression. Results We found that the expression of GPD1 was downregulated in ccRCC tissues, and overexpression of GPD1 inhibited the progression of ccRCC both in vivo and in vitro. Furthermore, we demonstrated that hypoxia inducible factor-1α (HIF1α) directly regulates GPD1 at the transcriptional level, which leads to the inhibition of mitochondrial function and lipid metabolism. Additionally, GPD1 was shown to inhibit prolyl hydroxylase 3 (PHD3), which blocks prolyl-hydroxylation of HIF1α and subsequent proteasomal degradation, and thus reinforces the inhibition of mitochondrial function and phosphorylation of AMPK via suppressing glycerol-3-phosphate dehydrogenase 2 (GPD2). Conclusions This study not only demonstrated that HIF1α-GPD1 forms a positive feedforward loop inhibiting mitochondrial function and lipid metabolism in ccRCC, but also discovered a new mechanism for the molecular basis of HIF1α to inhibit tumor activity, thus providing novel insights into hypoxia-lipid-mediated ccRCC therapy
    corecore