81,674 research outputs found

    Isothermal Shock Formation in Non-Equatorial Accretion Flows around Kerr Black Holes

    Full text link
    We explore isothermal shock formation in non-equatorial, adiabatic accretion flows onto a rotating black hole, with possible application to some active galactic nuclei (AGNs). The isothermal shock jump conditions as well as the regularity condition, previously developed for one-dimensional (1D) flows in the equatorial plane, are extended to two-dimensional (2D), non-equatorial flows, to explore possible geometrical effects. The basic hydrodynamic equations with these conditions are self-consistently solved in the context of general relativity to explore the formation of stable isothermal shocks. We find that strong shocks are formed in various locations above the equatorial plane, especially around a rapidly-rotating black hole with the prograde flows (rather than a Schwarzschild black hole). The retrograde flows are generally found to develop weaker shocks. The energy dissipation across the shock in the hot non-equatorial flows above the cooler accretion disk may offer an attractive illuminating source for the reprocessed features, such as the iron fluorescence lines, which are often observed in some AGNs.Comment: 22 pages with 11 figures, presented at 5th international conference on high energy density laboratory astrophysics in Tucson, Arizona. accepted to Ap

    The Chandra Detection of Galactic Center X-ray Features G359.89-0.08 and G359.54+0.18

    Get PDF
    We report on the detection of two elongated X-ray features G359.89-0.08 and G359.54+0.18 in the Galactic center (GC) region using the Chandra X-ray Observatory. G359.89-0.08 is an elongated X-ray feature located ∼\sim2\arcmin in projection south of the center of the Galaxy, SgrA∗^*. This X-ray feature source is partially coincident with a slightly curved (``wisp''-like) non-thermal radio source. The X-ray spectrum of G359.89-0.08 can be best characterized as non-thermal, with a photon index of 2. The morphological and spectral characteristics of the X-ray and radio emission associated with G359.89-0.08 are best interpreted as the synchrotron emission from a ram-pressure confined pulsar wind nebula. G359.54+0.18 is one of the most prominent radio non-thermal filaments (NTFs) in the GC region, located ∼\sim30\arcmin in projection from SgrA∗^*. A narrow (∼\sim10\arcsec) filament of X-ray emission appears to arise from one of the two strands that comprise the radio NTF. Although the photon statistics are poor for this source, the X-ray emission is also likely to be non-thermal in nature. Several models for the production of X-ray emission in G359.54+0.18 are discussed.Comment: 19 pages with 6 figures included, accepted by A

    The (1+1)-dimensional Massive sine-Gordon Field Theory and the Gaussian Wave-functional Approach

    Full text link
    The ground, one- and two-particle states of the (1+1)-dimensional massive sine-Gordon field theory are investigated within the framework of the Gaussian wave-functional approach. We demonstrate that for a certain region of the model-parameter space, the vacuum of the field system is asymmetrical. Furthermore, it is shown that two-particle bound state can exist upon the asymmetric vacuum for a part of the aforementioned region. Besides, for the bosonic equivalent to the massive Schwinger model, the masses of the one boson and two-boson bound states agree with the recent second-order results of a fermion-mass perturbation calculation when the fermion mass is small.Comment: Latex, 11 pages, 8 figures (EPS files

    The binary mass transfer origin of the red blue straggler sequence in M30

    Get PDF
    Two separated sequences of blue straggler stars (BSSs) have been revealed by Ferraro et al. (2009) in the color-magnitude diagram (CMD) of the Milky Way globular cluster M30. Their presence has been suggested to be related to the two BSS formation channels (namely, collisions and mass-transfer in close binaries) operating within the same stellar system. The blue sequence was indeed found to be well reproduced by collisional BSS models. In contrast, no specific models for mass transfer BSSs were available for an old stellar system like M30. Here we present binary evolution models, including case-B mass transfer and binary merging, specifically calculated for this cluster. We discuss in detail the evolutionary track of a 0.9+0.5M⊙0.9+0.5 M_\odot binary, which spends approximately 4 Gyr in the BSS region of the CMD of a 13 Gyr old cluster. We also run Monte-Carlo simulations to study the distribution of mass transfer BSSs in the CMD and to compare it with the observational data. Our results show that: (1) the color and magnitude distribution of synthetic mass transfer BSSs defines a strip in the CMD that nicely matches the observed red BSS sequence, thus providing strong support to the mass transfer origin for these stars; (2) the CMD distribution of synthetic BSSs never attains the observed location of the blue BSS sequence, thus reinforcing the hypothesis that the latter formed through a different channel (likely collisions); (3) most (∼60%\sim 60\%) of the synthetic BSSs are produced by mass-transfer models, while the remaining <40%< 40\% requires the contribution from merger models.Comment: 8 pages, 5 figures, accepted to Ap

    Radial Velocities of Stars in the Galactic Center

    Get PDF
    We present results from K band slit scan observations of a ~20''x20'' region of the Galactic center (GC) in two separate epochs more than five years apart. The high resolution (R>=14,000) observations allow the most accurate radial velocity and acceleration measurements of the stars in the central parsec of the Galaxy. Detected stars can be divided into three groups based on the CO absorption band heads at ~2.2935 microns and the He I lines at ~2.0581 microns and ~2.112, 2.113 microns: cool, narrow-line hot and broad-line hot. The radial velocities of the cool, late-type stars have approximately a symmetrical distribution with its center at ~-7.8(+/-10.3) km/s and a standard deviation ~113.7(+/-10.3) km/s. Although our statistics are dominated by the brightest stars, we estimate a central black hole mass of 3.9(+/-1.1) million solar masses, consistent with current estimates from complete orbits of individual stars. Our surface density profile and the velocity dispersion of the late type stars support the existence of a low density region at the Galactic center suggested by earlier observations. Many hot, early-type stars show radial velocity changes higher than maximum values allowed by pure circular orbital motions around a central massive object, suggesting that the motions of these stars greatly deviate from circular orbital motions around the Galactic center. The correlation between the radial velocities of the early type He I stars and their declination offsets from Sagittarius A* suggests that a systematic rotation is present for the early-type population. No figure rotation around the Galactic center for the late type stars is supported by the new observations.Comment: 61 pages, 18 figures, 7 tables; accepted for publication in Astrophysical Journa

    On the relationship of the scaled phase space and Skyrme-coherent state treatments of proton antiproton annihilation at rest

    Full text link
    We discuss pion multiplicities and single pion momentum spectra from proton antiproton annihilation at rest. Both the scaled phase space model and the Skyrme-coherent state approach describe these observables well. In the coherent state approach the puzzling size of the scale parameter relating the phase space integrals for different multiplicities is replaced by a well defined weight function. The strength of this function is determined by the intensity of the classical pion field and its spatial extent is of order 1 fm.Comment: 11 pages including 4 figures(postscript
    • …
    corecore