19,076 research outputs found

    A New Approximate Min-Max Theorem with Applications in Cryptography

    Full text link
    We propose a novel proof technique that can be applied to attack a broad class of problems in computational complexity, when switching the order of universal and existential quantifiers is helpful. Our approach combines the standard min-max theorem and convex approximation techniques, offering quantitative improvements over the standard way of using min-max theorems as well as more concise and elegant proofs

    Phase transitions and critical behavior of black branes in canonical ensemble

    Full text link
    We study the thermodynamics and phase structure of asymptotically flat non-dilatonic as well as dilatonic black branes in a cavity in arbitrary dimensions (DD). We consider the canonical ensemble and so the charge inside the cavity and the temperature at the wall are fixed. We analyze the stability of the black brane equilibrium states and derive the phase structures. For the zero charge case we find an analog of Hawking-Page phase transition for these black branes in arbitrary dimensions. When the charge is non-zero, we find that below a critical value of the charge, the phase diagram has a line of first-order phase transition in a certain range of temperatures which ends up at a second order phase transition point (critical point) as the charge attains the critical value. We calculate the critical exponents at that critical point. Although our discussion is mainly concerned with the non-dilatonic branes, we show how it easily carries over to the dilatonic branes as well.Comment: 37 pages, 6 figures, the validity of using the effective action discussed, references adde

    Mitigating unbalance using distributed network reconfiguration techniques in distributed power generation grids with services for electric vehicles: A review

    Full text link
    © 2019 Elsevier Ltd With rapid movement to combat climate change by reducing greenhouse gases, there is an increasing trend to use more electric vehicles (EVs) and renewable energy sources (RES). With more EVs integration into electricity grid, this raises many challenges for the distribution service operators (DSOs) to integrate such RES-based, distributed generation (DG) and EV-like distributed loads into distribution grids. Effective management of distribution network imbalance is one of the challenges. The distribution network reconfiguration (DNR) techniques are promising to address the issue of imbalance along with other techniques such as the optimal distributed generation placement and allocation (OPDGA) method. This paper presents a systematic and thorough review of DNR techniques for mitigating unbalance of distribution networks, based on papers published in peer-reviewed journals in the last three decades. It puts more focus on how the DNR techniques have been used to manage network imbalance due to distributed loads and DG units. To the best of our knowledge, this is the first attempt to review the research works in the field using DNR techniques to mitigate unbalanced distribution networks. Therefore, this paper will serve as a prime source of the guidance for mitigating network imbalance using the DNR techniques to the new researchers in this field

    An Enhanced DC-Bus Voltage-Control Loop for Single-Phase Grid-Connected DC/AC Converters

    Full text link
    © 1986-2012 IEEE. This paper presents a method to enhance the dc-bus voltage-control loop of a single-phase grid-connected dc/ac converter, which improves its responses in terms of oscillation on its dc-bus voltage as well as its output ac current. Conventionally, the double-frequency (2-f) ripple is reduced by using a large electrolyte capacitor, which increases the cost and size of the system. A state-of-the-art approach is to use a notch filter (NF) to block the 2-f ripple in the voltage-control loop. This can significantly reduce the capacitor size. The existing presentations of this method, however, do not integrate the internal dynamics of the NF into consideration. This paper proposes a new way of implementing the NF, which allows integration of its internal variables into the control loop. The resulted system exhibits enhanced transient responses at both the dc-bus voltage and the output ac current. The proposed method is analyzed in detail and its effectiveness is verified through simulations and experimental results

    Smart Voltage-Source Inverters with a Novel Approach to Enhance Neutral-Current Compensation

    Full text link
    © 1982-2012 IEEE. The presence of a neutral current is quite common in three-phase (3P) four-wire (4W) distribution systems due to an unequal distribution of linear and nonlinear single-phase (1P) loads and small distributed generators. However, a high neutral current can overload the neutral conductor and distribution transformer, which can cause electrical safety concerns and even fire. Among several existing neutral current compensators, the 3P four-leg (4L) voltage-source inverter (VSI) provides better control flexibility and more efficient performance than the passive compensators but requires a higher VSI capacity for the fourth-leg operation. To provide a solution to the aforementioned problem, this paper presents a novel control method to utilize the available capacity of a 3P-4L VSI after active and reactive power regulation to enhance the neutral-current compensation. A smart VSI (SVSI) is designed to operate with a solar photovoltaic unit, regulate the ac side voltage, and minimize the neutral current. Case studies are conducted with actual load data from a commercial building in the PSCAD/EMTDC software environment. The designed system with the proposed control method can provide a significant improvement in the neutral-current compensation, phase balancing, and unbalance factor compared to a fixed-capacity 3P-4L SVSI. Experimental results using a TMS320F28335 digital signal processor microcontroller and modified Semiteach 3P-4L inverter are presented to verify the robustness of the designed controller and the enhancement to the neutral-current compensation using the proposed dynamic capacity-control method

    Impacts of yeast metabolic network structure on enzyme evolution

    Get PDF
    Vitkup et al. recently presented an analysis of the influence of yeast metabolic network structure on enzyme evolution; different conclusions are reached when modularity is properly accounted for

    Treatment of Linear and Nonlinear Dielectric Property of Molecular Monolayer and Submonolayer with Microscopic Dipole Lattice Model: I. Second Harmonic Generation and Sum-Frequency Generation

    Full text link
    In the currently accepted models of the nonlinear optics, the nonlinear radiation was treated as the result of an infinitesimally thin polarization sheet layer, and a three layer model was generally employed. The direct consequence of this approach is that an apriori dielectric constant, which still does not have a clear definition, has to be assigned to this polarization layer. Because the Second Harmonic Generation (SHG) and the Sum-Frequency Generation vibrational Spectroscopy (SFG-VS) have been proven as the sensitive probes for interfaces with the submonolayer coverage, the treatment based on the more realistic discrete induced dipole model needs to be developed. Here we show that following the molecular optics theory approach the SHG, as well as the SFG-VS, radiation from the monolayer or submonolayer at an interface can be rigorously treated as the radiation from an induced dipole lattice at the interface. In this approach, the introduction of the polarization sheet is no longer necessary. Therefore, the ambiguity of the unaccounted dielectric constant of the polarization layer is no longer an issue. Moreover, the anisotropic two dimensional microscopic local field factors can be explicitly expressed with the linear polarizability tensors of the interfacial molecules. Based on the planewise dipole sum rule in the molecular monolayer, crucial experimental tests of this microscopic treatment with SHG and SFG-VS are discussed. Many puzzles in the literature of surface SHG and SFG spectroscopy studies can also be understood or resolved in this framework. This new treatment may provide a solid basis for the quantitative analysis in the surface SHG and SFG studies.Comment: 23 pages, 3 figure

    Phase structure of black branes in grand canonical ensemble

    Full text link
    This is a companion paper of our previous work [1] where we studied the thermodynamics and phase structure of asymptotically flat black pp-branes in a cavity in arbitrary dimensions DD in a canonical ensemble. In this work we study the thermodynamics and phase structure of the same in a grand canonical ensemble. Since the boundary data in two cases are different (for the grand canonical ensemble boundary potential is fixed instead of the charge as in canonical ensemble) the stability analysis and the phase structure in the two cases are quite different. In particular, we find that there exists an analog of one-variable analysis as in canonical ensemble, which gives the same stability condition as the rather complicated known (but generalized from black holes to the present case) two-variable analysis. When certain condition for the fixed potential is satisfied, the phase structure of charged black pp-branes is in some sense similar to that of the zero charge black pp-branes in canonical ensemble up to a certain temperature. The new feature in the present case is that above this temperature, unlike the zero-charge case, the stable brane phase no longer exists and `hot flat space' is the stable phase here. In the grand canonical ensemble there is an analog of Hawking-Page transition, even for the charged black pp-brane, as opposed to the canonical ensemble. Our study applies to non-dilatonic as well as dilatonic black pp-branes in DD space-time dimensions.Comment: 32 pages, 2 figures, various points refined, discussion expanded, references updated, typos corrected, published in JHEP 1105:091,201

    Implementation of Web-Based Respondent-Driven Sampling among Men who Have Sex with Men in Vietnam

    Get PDF
    Objective: Lack of representative data about hidden groups, like men who have sex with men (MSM), hinders an evidence-based response to the HIV epidemics. Respondent-driven sampling (RDS) was developed to overcome sampling challenges in studies of populations like MSM for which sampling frames are absent. Internet-based RDS (webRDS) can potentially circumvent limitations of the original RDS method. We aimed to implement and evaluate webRDS among a hidden population. Methods and Design: This cross-sectional study took place 18 February to 12 April, 2011 among MSM in Vietnam. Inclusion criteria were men, aged 18 and above, who had ever had sex with another man and were living in Vietnam. Participants were invited by an MSM friend, logged in, and answered a survey. Participants could recruit up to four MSM friends. We evaluated the system by its success in generating sustained recruitment and the degree to which the sample compositions stabilized with increasing sample size. Results: Twenty starting participants generated 676 participants over 24 recruitment waves. Analyses did not show evidence of bias due to ineligible participation. Estimated mean age was 22 year and 82% came from the two large metropolitan areas. 32 out of 63 provinces were represented. The median number of sexual partners during the last six months was two. The sample composition stabilized well for 16 out of 17 variables. Conclusion: Results indicate that webRDS could be implemented at a low cost among Internet-using MSM in Vietnam. WebRDS may be a promising method for sampling of Internet-using MSM and other hidden groups. Key words: Respondent-driven sampling, Online sampling, Men who have sex with men, Vietnam, Sexual risk behavio
    • …
    corecore