106,834 research outputs found

    A process yields large quantities of pure ribosome subunits

    Get PDF
    Development of process for in-vitro protein synthesis from living cells followed by dissociation of ribosomes into subunits is discussed. Process depends on dialysis or use of chelating agents. Operation of process and advantages over previous methods are outlined

    Crucial Dependence of ``Precarious'' and ``Autonomous'' phi^4s Upon the Normal-ordering Mass

    Get PDF
    Using the Gaussian wave-functional approach with the normal-ordering renormalization prescription, we show that for the (3+1)-dimensional massive lambda phi^4 theory, ``precarious'' and ``autonomous'' phi^4s can exist if and only if the normal-ordering mass is equal to the classical masses at the symmetrc and asymmetric vacua, respectively.Comment: 6 pages, no figures, Revtex file, accepted for publication in Mod. Phys. Lett.

    Methods of calculation of a friction coefficient: Application to the nanotubes

    Full text link
    In this work we develop theoretical and numerical methods of calculation of a dynamic friction coefficient. The theoretical method is based on an adiabatic approximation which allows us to express the dynamic friction coefficient in terms of the time integral of the autocorrelation function of the force between both sliding objects. The motion of the objects and the autocorrelation function can be numerically calculated by molecular-dynamics simulations. We have successfully applied these methods to the evaluation of the dynamic friction coefficient of the relative motion of two concentric carbon nanotubes. The dynamic friction coefficient is shown to increase with the temperature.Comment: 4 pages, 6 figure

    Self-Diffusion in 2D Dusty Plasma Liquids: Numerical Simulation Results

    Full text link
    We perform Brownian dynamics simulations for studying the self-diffusion in two-dimensional (2D) dusty plasma liquids, in terms of both mean-square displacement and velocity autocorrelation function (VAF). Super-diffusion of charged dust particles has been observed to be most significant at infinitely small damping rate γ\gamma for intermediate coupling strength, where the long-time asymptotic behavior of VAF is found to be the product of t1t^{-1} and exp(γt)\exp{(-\gamma t)}. The former represents the prediction of early theories in 2D simple liquids and the latter the VAF of a free Brownian particle. This leads to a smooth transition from super-diffusion to normal diffusion, and then to sub-diffusion with an increase of the damping rate. These results well explain the seemingly contradictory scattered in recent classical molecular dynamics simulations and experiments of dusty plasmas.Comment: 10 pages 5 figures, accepted by PR
    corecore