4,522 research outputs found
Strain-mediated electric-field control of photoinduced demagnetization in La0.8 Ca0.2 MnO3 thin films
La0.8 Ca0.2 MnO3 (LCMO) thin films have been epitaxially grown on ferroelectric 0.67Pb (Mg1/3 Nb 2/3) O3-0.33 PbTiO3 (PMN-PT) substrates. The substrate-induced strain effects on the transport and photoinduced demagnetization in LCMO films were investigated. The photoinduced resistances (PRs) of LCMO systematically changed versus temperature before and after ferroelectric-poling on PMN-PT, indicating that photoexcited extra carriers in LCMO may suppress the neighboring spin correlation due to the photoassisted hopping of anti-Jahn-Teller polarons. Moreover, a significant modulation on PR by electric fields applied across PMN-PT was observed. In situ x-ray diffraction indicates that the observed variations result from substrate-induced strain due to the ferroelectric polarization or converse piezoelectric effect. © 2011 American Institute of Physics.published_or_final_versio
Evaluation of bone-tendon junction healing using water jet ultrasound indentation method
2009-2010 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe
Influence of human body on massive MIMO indoor channels
© 2019 IEEE. Massive MIMO can dramatically improve capacity and spectral efficiency. However, it is not very clear whether it can significantly improve the signal blockage problem that exists in single antenna systems. In this paper, we investigate the impact of the human body on indoor massive MIMO channels, using practically measured channel data for a 32x8 massive MIMO system in a complex office environment. We introduce a parameter of Power Imbalance (PI) indices to estimate the wide-sense none-stationarity in multiple domains and another parameter of Channel Popularity Indices (CPI) to predict the popularity of MIMO channel. We find that in most cases, the presence of the human body still has a non- negligible negative impact. It decreases the ergodic capacity by about 8% and increases the path loss exponent by 1. In average, the ergodic capacity for NLOS channels are 15% higher than that for LOS
Measurement and Modeling of Wireless Off-Body Propagation Characteristics under Hospital Environment at 6-8.5 GHz
© 2013 IEEE. A measurement-based novel statistical path-loss model with a height-dependent factor and a body obstruction (BO) attenuation factor for off-body channel under a hospital environment at 6-8.5 GHz is proposed. The height-dependent factor is introduced to emulate different access point (AP) arrangement scenarios, and the BO factor is employed to describe the effect caused by different body-worn positions. The height-dependent path-loss exponent is validated to fluctuate from 2 to 4 with AP height increasing by employing both computer simulation and classical two-ray model theory. As further validated, the proposed model can provide more flexibility and higher accuracy compared with its existing counterparts. The presented channel model is expected to provide wireless link budget estimation and to further develop the physical layer algorithms for body-centric communication systems under hospital environments
Recent development of VUV-based processes for air pollutant degradation
published_or_final_versio
Solubility of strontium-substituted apatite by solid titration
Solid titration was used to explore the solubility isotherms of partially (Srx-HAp, x = 1, 5, 10, 40, 60 mol.%) and fully substituted strontium hydroxyapatite (Sr-HAp). Solubility increased with increasing strontium content. No phase other than strontium-substituted HAp, corresponding to the original titrant, was detected in the solid present at equilibrium; in particular, dicalcium hydrogen phosphate was not detected at low pH. The increase in solubility with strontium content is interpreted as a destabilization of the crystal structure by the larger strontium ion. Carbonated HAp was formed in simulated body fluid containing carbonate on seeding with Sr10-HAp, but the precipitate was strontium-substituted on seeding with Sr-HAp. Strontium-substituted HAp might be usable as a template for the growth of new bone, since nucleation appears to be facilitated. © 2008 Acta Materialia Inc.postprin
Solubility of strontium-substituted apatite by solid titration
Solid titration was used to explore the solubility isotherms of partially (Srx-HAp, x = 1, 5, 10, 40, 60 mol.%) and fully substituted strontium hydroxyapatite (Sr-HAp). Solubility increased with increasing strontium content. No phase other than strontium-substituted HAp, corresponding to the original titrant, was detected in the solid present at equilibrium; in particular, dicalcium hydrogen phosphate was not detected at low pH. The increase in solubility with strontium content is interpreted as a destabilization of the crystal structure by the larger strontium ion. Carbonated HAp was formed in simulated body fluid containing carbonate on seeding with Sr10-HAp, but the precipitate was strontium-substituted on seeding with Sr-HAp. Strontium-substituted HAp might be usable as a template for the growth of new bone, since nucleation appears to be facilitated. © 2008 Acta Materialia Inc.postprin
Phase diagram and spin-glass phenomena in electron-doped La1-xHfxMnO3 (0.05 ≤ x ≤ 0.3) manganite oxides
The effects of tetravalent hafnium doping on the structural, transport, and magnetic properties of polycrystalline La1−xHfxMnO3 (LHMO) (0.05 ≤ x ≤ 0.3) were investigated systematically. LHMO exhibited a typical colossal magnetoresistance effect via the double-exchange between Mn2+ and Mn3+ ions, instead of that between Mn3+ and Mn4+ ions in hole-doped manganites. A phase diagram was obtained for the first time through magnetization and resistance measurements in a broad temperature range. As the Hf concentration varied from x = 0.05 to 0.3, the Curie point and metal-to-insulator transition temperature increased significantly, whereas the magnetization and resistivity decreased remarkably. An abnormal enhancement of the magnetization was observed at about 42 K. It was further confirmed that a second magnetic phase MnO2 in LHMO gives rise to such a phenomenon. The possible causes are discussed in detail. The dynamic magnetic properties of LHMO, including relaxation and aging processes, were studied, demonstrating a spin-glass state at low temperature accompanied by a ferromagnetic phase.published_or_final_versio
Real-time ultrasonic assessment of progressive proteoglycan depletion in articular cartilage
2008-2009 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe
- …