114,048 research outputs found

    Development of a Straw Tube Chamber with Pickup-Pad Readout

    Get PDF
    We have developed a straw tube chamber with pickup-pad readout. The mechanism for signal pickup, the size of the pickup signal, and the distribution of signals among neighboring pads are discussed. We have tested a prototype chamber in a beamtest at Brookhaven National laboratory and have measured chamber efficiencies in excess of 99%.Comment: 7 pages, 8 figures, 2 tables. Talk presented at DPF '99 Meeting, UCL

    Manual of phosphoric acid fuel cell power plant optimization model and computer program

    Get PDF
    An optimized cost and performance model for a phosphoric acid fuel cell power plant system was derived and developed into a modular FORTRAN computer code. Cost, energy, mass, and electrochemical analyses were combined to develop a mathematical model for optimizing the steam to methane ratio in the reformer, hydrogen utilization in the PAFC plates per stack. The nonlinear programming code, COMPUTE, was used to solve this model, in which the method of mixed penalty function combined with Hooke and Jeeves pattern search was chosen to evaluate this specific optimization problem

    Phosphoric acid fuel cell power plant system performance model and computer program

    Get PDF
    A FORTRAN computer program was developed for analyzing the performance of phosphoric acid fuel cell power plant systems. Energy mass and electrochemical analysis in the reformer, the shaft converters, the heat exchangers, and the fuel cell stack were combined to develop a mathematical model for the power plant for both atmospheric and pressurized conditions, and for several commercial fuels

    Manual of phosphoric acid fuel cell power plant cost model and computer program

    Get PDF
    Cost analysis of phosphoric acid fuel cell power plant includes two parts: a method for estimation of system capital costs, and an economic analysis which determines the levelized annual cost of operating the system used in the capital cost estimation. A FORTRAN computer has been developed for this cost analysis

    Manual of phosphoric acid fuel cell stack three-dimensional model and computer program

    Get PDF
    A detailed distributed mathematical model of phosphoric acid fuel cell stack have been developed, with the FORTRAN computer program, for analyzing the temperature distribution in the stack and the associated current density distribution on the cell plates. Energy, mass, and electrochemical analyses in the stack were combined to develop the model. Several reasonable assumptions were made to solve this mathematical model by means of the finite differences numerical method

    The relativistic Iron K-alpha line from an accretion disc onto a static non-baryonic compact object

    Full text link
    This paper continues the study of the properties of an accretion disc rotating around a non-baryonic (assumed super-massive) compact object. This kind of objects, generically known as boson stars, were earlier proposed as a possible alternative scenario to the existence of super-masive black holes in the center of every galaxy. A dilute boson star has also been proposed as a large part of the non-baryonic dark matter, flattening galactic rotational velocities curves. In this contribution, we compute the profile of the emission lines of Iron; its shape has been for long known as a useful diagnosis of the space-time geometry. We compare with the case of a Schwarzschild black hole, concluding that the differences are observationally distinguishable.Comment: 14 pages, 7 figure

    Direct Measurement of Quantum Dot Spin Dynamics using Time-Resolved Resonance Fluorescence

    Full text link
    We temporally resolve the resonance fluorescence from an electron spin confined to a single self-assembled quantum dot to measure directly the spin's optical initialization and natural relaxation timescales. Our measurements demonstrate that spin initialization occurs on the order of microseconds in the Faraday configuration when a laser resonantly drives the quantum dot transition. We show that the mechanism mediating the optically induced spin-flip changes from electron-nuclei interaction to hole-mixing interaction at 0.6 Tesla external magnetic field. Spin relaxation measurements result in times on the order of milliseconds and suggest that a B−5B^{-5} magnetic field dependence, due to spin-orbit coupling, is sustained all the way down to 2.2 Tesla.Comment: An additional EPAPS file in PDF format is available for download at the publications section of our website http://www.amop.phy.cam.ac.uk/amop-ma
    • …
    corecore