32 research outputs found

    Nuclear and Nucleolar Image Analysis of Human Breast Epithelial Cells Transformed by benzo[a]pyrene and Transfected with the c-Ha-ras oncogene

    No full text
    Changes in nuclear and nucleolar morphometric parameters were investigated by image analysis procedures in human breast MCF-10F epithelial cells expressing different stages of the tumourigenic progression after benzo[a]pyrene (BP) transformation (BP1, BP1-E, and BP1-E1 cell lines), and additionally transfected with the c-Ha-ras oncogene (BP1-Tras cell line). Nuclear pleomorphism was evident in all the transformed cells. The analysis of different morphometric parameters did not show a clear relationship between specific nuclear and nucleolar changes and the expression of the different stages of the tumourigenesis, with the exception of the nucleolar size, which could be associated to the expression of the tumourigenic phenotype, and a nucleolar area/nuclear area ratio, which discriminated the immortalized, the transformed, and the tumourigenic phenotypes from one another. The nuclear morphometric data established for the BP-transformed cells and for the cells additionally transfected with the c-Ha-ras oncogene were suggestive of complex and distinct morphofunctional mechanisms involving the in vitro transformation of the MCF-10F cells. The nuclear changes found in the BP1-Tras cell line were assumed to be related to the additional effects and/or enhanced genomic instability induced by transfection with the ras oncogene

    Yacon (Smallanthus sonchifolius) as a Food Supplement: Health-Promoting Benefits of Fructooligosaccharides

    No full text
    Yacon (Smallanthus sonchifolius), a perennial plant of the family Asteraceae native to the Andean regions of South America, is an abundant source of fructooligosaccharides (FOS). This comprehensive review of the literature addressed the role of yacon supplementation in promoting health and reducing the risk of chronic diseases. According to several preclinical and clinical trials, FOS intake favors the growth of health-promoting bacteria while reducing pathogenic bacteria populations. Moreover, the endproducts of FOS fermentation by the intestinal microbiota, short chain fatty acids (SCFA), act as substrates or signaling molecules in the regulation of the immune response, glucose homeostasis and lipid metabolism. As a result, glycemic levels, body weight and colon cancer risk can be reduced. Based on these findings, most studies reviewed concluded that due to their functional properties, yacon roots may be effectively used as a dietary supplement to prevent and treat chronic diseases

    Protective Effects of Omega-3 Supplementation against Doxorubicin-Induced Deleterious Effects on the Liver and Kidneys of Rats

    No full text
    Anthracycline doxorubicin (DOX) is still widely used as a chemotherapeutic drug for some solid tumors. Although DOX is highly effective, its side effects are limiting factors, such as cardio, nephro and hepatotoxicity. As such, approaches used to mitigate these adverse effects are highly encouraged. Omega 3 (ω-3), which is a class of long-chain polyunsaturated fatty acids, has been shown to have anti-inflammatory and antioxidant effects in preclinical bioassays. Thus, we evaluated the protective effects of ω-3 supplementation on hepatotoxicity and nephrotoxicity induced by multiple DOX administrations in rodents. Male Wistar rats (10 rats/group) were treated daily with ω-3 (400 mg/kg/day) by gavage for six weeks. Two weeks after the first ω-3 administration, the rats received DOX (3.5 mg/kg, intraperitoneal, 1×/week) for four weeks. DOX treatment reduced body weight gain increased systemic genotoxicity and caused liver-related (increase in serum ALT levels, thickness of the Glisson’s capsule, compensatory proliferation and p65 levels) and kidney-related (increase in serum urea and creatinine levels, and incidence of tubular dilatation) deleterious outcomes. In contrast, ω-3 supplementation was safe and abrogated the DOX-related enhancement of systemic genotoxicity, serum urea and creatinine levels. Furthermore, ω-3 intervention reduced by 50% the incidence of kidney histological lesions while reducing by 40–50% the p65 protein level, and the proliferative response in the liver induced by DOX. Our findings indicate that ω-3 intervention attenuated the DOX-induced deleterious effects in the liver and kidney. Therefore, our findings may inspire future mechanistical investigations and clinical interventions with ω-3 on the reported outcomes

    Modifying effects of 2,4-D and Glyphosate exposures on gut-liver-adipose tissue axis of diet-induced non-alcoholic fatty liver disease in mice

    No full text
    Nonalcoholic fatty liver disease (NAFLD), which is linked to western diet (WD) intake, affects 30% of the world’s population and involves the crosstalk of liver steatosis, hypertrophy/inflammation of adipose tissue and deregulation of gut microbiome. Glyphosate and 2,4-D are some of the most applied herbicides worldwide, and their roles in NAFLD have not been investigated. Thus, the present study evaluated whether glyphosate and 2,4-D, in single or mixed exposure, alter WD-induced NAFLD in a mouse model. Male C57Bl/6 mice (n = 10/group) received a fat (30% lard, 0.02% cholesterol), and sucrose-rich diet (20%) and high sugar solution (23.1 and 18.9 g/L of fructose and glucose) for 6 months. Simultaneously, animals received glyphosate (0.05 or 5 mg/kg/day), 2,4-D (0.02 or 2 mg/kg/day), or their combination (0.05 +0.02 or 5 +2 mg/kg/day) by intragastrical administration (5 ×/week). Doses were based on the Acceptable Daily Intake (ADIs) or No Observed Adverse Effect Level (NOAEL) levels. Herbicide exposures featured differential responses. WD-induced obesity, hypercholesterolemia, and hyperglycemia remained unaltered. Compared to the group receiving only WD, only the concomitant exposure to WD and 2,4-D (2 mg) enhanced the percentage of mice with moderate/severe hepatic inflammation, CD68 macrophage infiltration, and malondialdehyde levels in the liver. In line, this herbicide modulated immune response- (including Cd4, C8b, Cd28, Cxcr3, Cxcr6) and oxidative stress-related (such as Gsta1, Gsta2, Gsta4, Gstm1, Gstm2, Gstm3, Gstm4, Nqo1, Gpx2) genes in the hepatic transcriptome analysis. This exposure also enriched pro-inflammatory Deferribacteres phylum in fecal microbiome. In general, the herbicide mixtures did not feature the same effects attributed to 2,4-D isolated exposure. Our findings indicate that 2,4-D, at a dose within the toxicological limits, was able to induce disturbances in mainly at the liver and gut axes involved in NAFLD development in male mice

    The Implications of Connexin 43 Deficiency during the Early Stages of Chemically Induced Mouse Colon Carcinogenesis

    No full text
    Colorectal cancer (CRC), associated with an increased intake of processed red meats, saturated fats, and simple carbohydrates accompanied by low dietary fiber, fruits, and vegetables consumption, presents a high epidemiological burden. Connexin43 (Cx43) protein, which forms gap junctions or hemichannels, has tumor suppressor or oncogenic activities in a cancer type- and stage-dependent manner. Cx43 expression varies during colon carcinogenesis, and its functional role is not fully understood. Thus, we evaluated the implications of Cx43 heterologous deletion (Cx43+/−) during the early stages of a chemically induced model of colon carcinogenesis. Female C57BL/6J mice (wild-type or Cx43+/−) were submitted to a colon carcinogenesis model induced by 1,2 dimethylhydrazine (DMH). Mice were euthanized eight hours (week 7) or 30 weeks (week 37) after the last DMH administration to evaluate subacute colon toxicity outcomes or the burden of (pre)neoplastic lesions, respectively. At week 7, Cx43 deficiency inferred no alterations in the DMH-induced increase in systemic (peripheral blood), in situ (colonocytes) DNA damage, and apoptosis in the colonocytes. At week 30, Cx43+/− mice presented an increase in preneoplastic aberrant crypt foci (ACF) multiplicity, while no alterations were observed in colorectal adenoma (CRA) occurrence, multiplicity, volume, proliferation, growth, and ÎČ-catenin immunoexpression. Similarly, an in silico analysis of human CRA showed decreased mRNA expression of Cx43 with no correlation with proliferation, apoptosis, and ÎČ-catenin markers. These findings indicate the discrete role of Cx43 in the early stages of chemically induced mouse colon carcinogenesis

    Unraveling Hepatic Metabolomic Profiles and Morphological Outcomes in a Hybrid Model of NASH in Different Mouse Strains

    No full text
    Nonalcoholic fatty liver disease (NAFLD) encompasses nonalcoholic steatohepatitis (NASH) and affects 25% of the global population. Although a plethora of experimental models for studying NASH have been proposed, still scarce findings regarding the hepatic metabolomic/molecular profile. In the present study, we sought to unravel the hepatic metabolomic profile of mice subjected to a hybrid model of NASH, by combining a Western diet and carbon tetrachloride administration, for 8 weeks, in male C57BL/6J and BALB/c mice. In both mouse strains, the main traits of NASH—metabolic (glucose intolerance profile), morphologic (extensive microvesicular steatosis and fibrosis, lobular inflammation, and adipose tissue-related inflammation/hypertrophy), and molecular (impaired Nrf2/NF-ÎșB pathway dynamics and altered metabolomic profile)—were observed. The hepatic metabolomic profile revealed that the hybrid protocol impaired, in both strains, the abundance of branched chain-aromatic amino acids, carboxylic acids, and glycosyl compounds, that might be linked to the Nrf2 pathway activation. Moreover, we observed a strain-dependent hepatic metabolomic signature, in which the tricarboxylic acid metabolites and pyruvate metabolism were dissimilarly modulated in C57BL/6J and BALB/c mice. Thus, we provide evidence that the strain-dependent hepatic metabolomic profile might be linked to the distinct underlying mechanisms of NASH, also prospecting potential mechanistic insights into the corresponding disease

    Fibrosis-associated hepatocarcinogenesis revisited: Establishing standard medium-term chemically-induced male and female models.

    No full text
    Hepatocellular carcinoma causes ~10% of all cancer-related deaths worldwide, usually emerging in a background of liver fibrosis/cirrhosis (70%-90% of cases). Chemically-induced mouse models for fibrosis-associated hepatocarcinogenesis are widely-applied, resembling the corresponding human disease. Nonetheless, a long time is necessary for the development of preneoplastic/neoplastic lesions. Thus, we proposed an early fibrosis-associated hepatocarcinogenesis model for male and female mice separately, focusing on reducing the experimental time for preneoplastic/neoplastic lesions development and establishing standard models for both sexes. Then, two-week old susceptible C3H/HeJ male and female mice (n = 8 animals/sex/group) received a single dose of diethylnitrosamine (DEN, 10 or 50 mg/Kg). During 2 months, mice received 3 weekly doses of carbon tetrachloride (CCl4, 10% corn oil solution, 0.25 to 1.50 ΌL/g b.wt.) and they were euthanized at week 17. DEN/CCl4 protocols for males and females displayed clear liver fibrosis, featuring collagen accumulation and hepatic stellate cell activation (α-SMA). In addition, liver from males displayed increased CD68+ macrophage number, COX-2 protein expression and IL-6 levels. The DEN/CCl4 models in both sexes impaired antioxidant defense as well as enhanced hepatocyte proliferation and apoptosis. Moreover, DEN/CCl4-treated male and female developed multiple preneoplastic altered hepatocyte foci and hepatocellular adenomas. As expected, the models showed clear male bias. Therefore, we established standard and suitable fibrosis-associated hepatocarcinogenesis models for male and female mice, shortening the experimental time for the development of hepatocellular preneoplastic/neoplastic lesions in comparison to other classical models

    Caffeine and Chlorogenic Acid Combination Attenuate Early-Stage Chemically Induced Colon Carcinogenesis in Mice: Involvement of oncomiR miR-21a-5p.

    No full text
    Colorectal cancer (CRC) is one of most common cancers worldwide, with high rates of mortality. Epidemiological findings demonstrate that coffee consumption reduces the risk of developing CRC by ~13%. In general, in vivo and in vitro findings demonstrate the antiproliferative, antioxidant and proapoptotic effects of brewed coffee or major bioavailable coffee compounds. Thus, it was assessed whether caffeine (CAF) and/or chlorogenic acid (CGA) attenuates the early-stage of chemically induced mouse colon carcinogenesis. Male Swiss mice were submitted to a 1,2-dimethylhydrazine/deoxycholic acid (DMH/DCA)-induced colon carcinogenesis model. These animals received CAF (50 mg/kg), CGA (25 mg/kg) or CAF+CGA (50 + 25 mg/kg) intragastrically for five times/week for ten weeks. CAF+CGA had the most pronounced effects on decreasing epithelial cell proliferation (Ki-67) and increasing apoptosis (cleaved caspase-3) in colonic crypts. This treatment also decreased the levels of proinflammatory cytokines IL-6, IL-17 and TNF-α, and downregulated the oncomiR miR-21a-5p in the colon. Accordingly, the analysis of miR-21a-5p targets demonstrated the genes involved in the negative regulation of proliferation and inflammation, and the positive regulation of apoptosis. Ultimately, CAF+CGA attenuated preneoplastic aberrant crypt foci (ACF) development. Our findings suggest that a combination of coffee compounds reduces early-stage colon carcinogenesis by the modulation of miR-21a-5p expression, highlighting the importance of coffee intake to prevent CRC
    corecore