1,623 research outputs found

    Revisiting the Ω(2012)\Omega(2012) as a hadronic molecule and its strong decays

    Full text link
    Recently, the Belle collaboration measured the ratios of the branching fractions of the newly observed Ω(2012)\Omega(2012) excited state. They did not observe significant signals for the Ω(2012)→KˉΞ∗(1530)→KˉπΞ\Omega(2012) \to \bar{K} \Xi^*(1530) \to \bar{K} \pi \Xi decay, and reported an upper limit for the ratio of the three body decay to the two body decay mode of Ω(2012)→KˉΞ\Omega(2012) \to \bar{K} \Xi. In this work, we revisit the newly observed Ω(2012)\Omega(2012) from the molecular perspective where this resonance appears to be a dynamically generated state with spin-parity 3/2−3/2^- from the coupled channels interactions of the KˉΞ∗(1530)\bar{K} \Xi^*(1530) and ηΩ\eta \Omega in ss-wave and KˉΞ\bar{K} \Xi in dd-wave. With the model parameters for the dd-wave interaction, we show that the ratio of these decay fractions reported recently by the Belle collaboration can be easily accommodated.Comment: Published version. Published in Eur.\ Phys.\ J.\ C {\bf 80}, 361 (2020

    Simulation Evidence of Hexagonal-to-Tetragonal ZnSe Structure Transition: A Monolayer Material with a Wide-Range Tunable Direct Bandgap

    Get PDF
    2D material with tunable direct bandgap in the intermediate region (i.e., ≈2–3 eV) is key to the achievement of high efficiency in visible-light optical devices. Herein, a simulation evidence of structure transition of monolayer ZnSe from the experimental pseudohexagonal structure to the tetragonal structure (t-ZnSe) under lateral pressure is shown, suggesting a possible fabrication route to achieve the t-ZnSe monolayer. The as-produced t-ZnSe monolayer exhibits highly tunable bandgap under the biaxial strains, allowing strain engineering of t-ZnSe’s bandgap over a wide range of 2–3 eV. Importantly, even under the biaxial strain up to 7%, the t-ZnSe monolayer still keeps its direct-gap property in the desirable range of 2.40–3.17 eV (corresponding to wavelength of green light to ultraviolet). The wide-range tunability of direct bandgap appears to be a unique property of the t-ZnSe monolayer, suggesting its potential application as a light-emitting 2D material in red–green–blue light emission diodes or as complementary light-absorption material in the blue–yellow region for multijunction solar cells. The straddling of the band edge of the t-ZnSe monolayer over the redox potential of water splitting reaction also points to its plausible application for visible- light-driven water splitting
    • …
    corecore