45,147 research outputs found

    Characterisation of real GPRS traffic with analytical tools

    Get PDF
    With GPRS and UMTS networks lunched, wireless multimedia services are commercially becoming the most attractive applications next to voice. Because of the nature of bursty, packet-switched schemes and multiple data rates, the traditional Erlang approach and Poisson models for characterising voice-centric services traffic are not suitable for studying wireless multimedia services traffic. Therefore, research on the characterisation of wireless multimedia services traffic is very challenging. The typical reference for the study of wireless multimedia services traffic is wired Internet services traffic. However, because of the differences in network protocol, bandwidth, and QoS requirements between wired and wireless services, their traffic characterisations may not be similar. Wired network Internet traffic shows self-similarity, long-range dependence and its file sizes exhibit heavy-tailedness. This paper reports the use of existing tools to analyse real GPRS traffic data to establish whether wireless multimedia services traffic have similar properties as wired Internet services traffic

    A fibre optic sensor for the measurement of surface roughness and displacement using artificial neural networks

    Get PDF
    This paper presents a fiber optic sensor system, artificial neural networks (fast back-propagation) are employed for the data processing. The use of the neural networks makes it possible for the sensor to be used both for surface roughness and displacement measurement at the same time. The results indicate 100% correct surface classification for ten different surfaces (different materials, different manufacturing methods, and different surface roughnesses) and displacement errors less then ±5 μm. The actual accuracy was restricted by the calibration machine. A measuring range of ±0.8 mm for the displacement measurement was achieved

    Toolbox for entanglement detection and fidelity estimation

    Full text link
    The determination of the state fidelity and the detection of entanglement are fundamental problems in quantum information experiments. We investigate how these goals can be achieved with a minimal effort. We show that the fidelity of GHZ and W states can be determined with an effort increasing only linearly with the number of qubits. We also present simple and robust methods for other states, such as cluster states and states in decoherence-free subspaces.Comment: 5 pages, no figures, v3: final version, to appear as a Rapid Communication in PR

    Damage evolution and rupture time prediction in thermal barrier coatings subjected to cyclic heating and cooling: an acoustic emission method

    Get PDF
    The real-time testing and quantitative assessment of damage evolution in thermal barrier coatings (TBCs) is desirable, but still intractable, especially at elevated temperature. In this paper, the fracture process of TBCs subjected to cyclic heating and cooling is monitored using an acoustic emission method. Based on the wavelet analysis of acoustic emission signals, damage modes in TBCs are discriminated. The results show that, due to thermal stress, it is preferential for vertical cracks in the heating stage and interface cracks in the cooling stage. The surface crack density and interface crack length are calculated to obtain the quantitative correlation of damage evolution in TBCs and acoustic emission parameters. The rupture time of TBCs can be predicted by the statistical analysis of acoustic emission signals

    Predicting gene expression in the human malaria parasite Plasmodium falciparum using histone modification, nucleosome positioning, and 3D localization features.

    Get PDF
    Empirical evidence suggests that the malaria parasite Plasmodium falciparum employs a broad range of mechanisms to regulate gene transcription throughout the organism's complex life cycle. To better understand this regulatory machinery, we assembled a rich collection of genomic and epigenomic data sets, including information about transcription factor (TF) binding motifs, patterns of covalent histone modifications, nucleosome occupancy, GC content, and global 3D genome architecture. We used these data to train machine learning models to discriminate between high-expression and low-expression genes, focusing on three distinct stages of the red blood cell phase of the Plasmodium life cycle. Our results highlight the importance of histone modifications and 3D chromatin architecture in Plasmodium transcriptional regulation and suggest that AP2 transcription factors may play a limited regulatory role, perhaps operating in conjunction with epigenetic factors

    Extracellular polymeric substances facilitate the adsorption and migration of Cu 2+ and Cd 2+ in saturated porous media

    Get PDF
    Heavy metal contamination in groundwater is a serious environmental problem. Many microorganisms that survive in subsurface porous media also produce extracellular polymeric substances (EPS), but little is known about the effect of these EPS on the fate and transport of heavy metals in aquifers. In this study, EPS extracted from soil with a steam method were used to study the adsorption behaviors of Cu2+ and Cd2+, employing quartz sand as a subsurface porous medium. The results showed that EPS had a good adsorption capacity for Cu2+ (13.5 mg/g) and Cd2+ (14.1 mg/g) that can be viewed using the Temkin and Freundlich models, respectively. At a pH value of 6.5 ± 0.1 and a temperature of 20 °C, EPS showed a greater affinity for Cu2+ than for Cd2+. The binding force between EPS and quartz sand was weak. The prior saturation of the sand media with EPS solution can significantly promote the migration of the Cu2+ and Cd2+ in sand columns by 8.8% and 32.1%, respectively. When treating both metals simultaneously, the migration of Cd2+ was found to be greater than that of Cu2+. This also demonstrated that EPS can promote the co-migration of Cu2+ and Cd2+ in saturated porous media

    Comparison of different measures for quantum discord under non-Markovian noise

    Full text link
    Two geometric measures for quantum discord were recently proposed by Modi et al. [Phys. Rev. Lett. 104, 080501 (2010)] and Dakic et al. [Phys. Rev. Lett. 105, 190502 (2010)]. We study the similarities and differences for total quantum correlations of Bell-diagonal states using these two geometry-based quantum discord and the original quantum discord. We show that, under non-Markovian dephasing channels, quantum discord and one of the geometric measures stay constant for a finite amount of time, but not the other geometric measure. However, all the three measures share a common sudden change point. Our study on critical point of sudden transition might be useful for keeping long time total quantum correlations under decoherence.Comment: 10 pages, 3 figures submitted for publicatio
    corecore