55 research outputs found

    Mutations in the PKM2 exon-10 region are associated with reduced allostery and increased nuclear translocation.

    Get PDF
    PKM2 is a key metabolic enzyme central to glucose metabolism and energy expenditure. Multiple stimuli regulate PKM2's activity through allosteric modulation and post-translational modifications. Furthermore, PKM2 can partner with KDM8, an oncogenic demethylase and enter the nucleus to serve as a HIF1α co-activator. Yet, the mechanistic basis of the exon-10 region in allosteric regulation and nuclear translocation remains unclear. Here, we determined the crystal structures and kinetic coupling constants of exon-10 tumor-related mutants (H391Y and R399E), showing altered structural plasticity and reduced allostery. Immunoprecipitation analysis revealed increased interaction with KDM8 for H391Y, R399E, and G415R. We also found a higher degree of HIF1α-mediated transactivation activity, particularly in the presence of KDM8. Furthermore, overexpression of PKM2 mutants significantly elevated cell growth and migration. Together, PKM2 exon-10 mutations lead to structure-allostery alterations and increased nuclear functions mediated by KDM8 in breast cancer cells. Targeting the PKM2-KDM8 complex may provide a potential therapeutic intervention

    GPR61 anchoring of PKA consolidates GPCR and cAMP signaling

    Get PDF
    Scaffolding proteins organize the information flow from activated G protein-coupled receptors (GPCRs) to intracellular effector cascades both spatially and temporally. By this means, signaling scaffolds, such as A-kinase anchoring proteins (AKAPs), compartmentalize kinase activity and ensure substrate selectivity. Using a phosphoproteomics approach we identified a physical and functional connection between protein kinase A (PKA) and Gpr161 (an orphan GPCR) signaling. We show that Gpr161 functions as a selective high-affinity AKAP for type I PKA regulatory subunits (RI). Using cell-based reporters to map protein–protein interactions, we discovered that RI binds directly and selectively to a hydrophobic protein–protein interaction interface in the cytoplasmic carboxyl-terminal tail of Gpr161. Furthermore, our data demonstrate that a binary complex between Gpr161 and RI promotes the compartmentalization of Gpr161 to the plasma membrane. Moreover, we show that Gpr161, functioning as an AKAP, recruits PKA RI to primary cilia in zebrafish embryos. We also show that Gpr161 is a target of PKA phosphorylation, and that mutation of the PKA phosphorylation site affects ciliary receptor localization. Thus, we propose that Gpr161 is itself an AKAP and that the cAMP-sensing Gpr161:PKA complex acts as cilium-compartmentalized signalosome, a concept that now needs to be considered in the analyzing, interpreting, and pharmaceutical targeting of PKA-associated functions

    Inhibited Spontaneous Emission in Solid-State Physics and Electronics

    Get PDF
    Abstract: In this report, we present the design principles to achieve a highly sensitive optical stress sensor. The structure we use is a double-layered (DL) photonic molecule with optical bonding and anti-bonding states based on whispering-gallery mode in photonic crystal microcavity. By applying finite-difference time-domain and finite-element methods, we simulate the change of optical properties (including wavelength and quality (Q) factor) of bonding mode caused by the DL structural variation due to the applied stress in two DL geometries. In the end, we summarize an optical stress sensor design with high Q factor, large structural response due to the applied stress, and large optical spectrum change due to the DL structural variation. The minimum detectable stress variation is estimated to be as small as 0.95 nN

    OCIS codes: (230.5298) Photonic crystals; (140.3945) Nanocavities; (140.5960) Semiconductor lasers

    Get PDF
    Abstract: We propose a point-shifted nanocavity based on square lattice photonic crystal, which sustains a lowest-order whispering-gallery (WG) mode. In simulation, the optimized WG mode (quality (Q) factor ~14,000) in point-shifted nanocavity can be with smaller mode volume (~5.5(λ/2n) 3 ) but larger nano-post tolerance than those in single-defect cavity design. From well-fabricated device, single WG mode lasing with measured Q factor of 4,100 and low threshold of 160 µW is obtained. Besides, we also observe the changed polarization of WG mode due to modal symmetry breaking caused by the presence of a nearby dielectric nano-particle, which would be useful in sensing molecule binding or attaching for bio-chemical applications. (C ©2010 Optical Society of Americ

    Activation of PKA via asymmetric allosteric coupling of structurally conserved cyclic nucleotide binding domains

    Get PDF
    Cyclic nucleotide-binding (CNB) domains allosterically regulate the activity of proteins with diverse functions, but the mechanisms that enable the cyclic nucleotide-binding signal to regulate distant domains are not well understood. Here we use optical tweezers and molecular dynamics to dissect changes in folding energy landscape associated with cAMP-binding signals transduced between the two CNB domains of protein kinase A (PKA). We find that the response of the energy landscape upon cAMP binding is domain specific, resulting in unique but mutually coordinated tasks: one CNB domain initiates cAMP binding and cooperativity, whereas the other triggers inter-domain interactions that promote the active conformation. Inter-domain interactions occur in a stepwise manner, beginning in intermediate-liganded states between apo and cAMP-bound domains. Moreover, we identify a cAMP-responsive switch, the N3A motif, whose conformation and stability depend on cAMP occupancy. This switch serves as a signaling hub, amplifying cAMP-binding signals during PKA activation

    Enhancing Wavelength Tunability of Photonic Crystal Nanolasers by Waveguide-Like Strain Shapers

    No full text

    Lasing Emission from Soft Photonic Crystals for Pressure and Position Sensing

    No full text
    In this report, we introduce a 1D photonic crystal (PhC) nanocavity with waveguide-like strain amplifiers within a soft polydimethylsiloxane substrate, presenting it as a potential candidate for highly sensitive pressure and position optical sensors. Due to its substantial optical wavelength response to uniform pressure, laser emission from this nanocavity enables the detection of a minimum applied uniform pressure of 1.6‰ in experiments. Based on this feature, we further studied and elucidated the distinct behaviors in wavelength shifts when applying localized pressure at various positions relative to the PhC nanocavity. In experiments, by mapping wavelength shifts of the PhC nanolaser under localized pressure applied using a micro-tip at different positions, we demonstrate the nanocavity’s capability to detect minute position differences, with position-dependent minimum resolutions ranging from tens to hundreds of micrometers. Furthermore, we also propose and validate the feasibility of employing the strain amplifier as an effective waveguide for extracting the sensing signal from the nanocavity. This approach achieves a 64% unidirectional coupling efficiency for leading out the sensing signal to a specific strain amplifier. We believe these findings pave the way for creating a highly sensitive position-sensing module that can accurately identify localized pressure in a planar space

    Photonic Crystal Polymeric Thin-Film Dye-Lasers for Attachable Strain Sensors

    No full text
    In this report, using two-dimensional photonic crystals (PhC) and a one-dimensional PhC nano-beam cavity, we realized the development of all-polymeric dye-lasers on a dye-doped, suspended poly-methylmethacrylate film with a wavelength-scale thickness. In addition to the characterization of basic lasing properties, we also evaluated its capacity to serve as an attachable strain sensor. Through experimentation, we confirmed the stable lasing performances of the dye-laser attaching on a rough surface. Moreover, we also theoretically studied the wavelength responses of the utilized PhC resonators to stretching strain and further improved them via the concept of strain shaping. The attachability and high strain sensing response of the presented thin film PhC dye-lasers demonstrate their potential as attachable strain sensors
    • …
    corecore