110,124 research outputs found

    Phenomenological Analysis of pppp and pˉp\bar{p}p Elastic Scattering Data in the Impact Parameter Space

    Full text link
    We use an almost model-independent analytical parameterization for pppp and pˉp\bar{p}p elastic scattering data to analyze the eikonal, profile, and inelastic overlap functions in the impact parameter space. Error propagation in the fit parameters allows estimations of uncertainty regions, improving the geometrical description of the hadron-hadron interaction. Several predictions are shown and, in particular, the prediction for pppp inelastic overlap function at s=14\sqrt{s}=14 TeV shows the saturation of the Froissart-Martin bound at LHC energies.Comment: 15 pages, 16 figure

    Film-stability in a vertical rotating tube with a core-gas flow

    Get PDF
    Linear hydrodynamic stability of interface between Newtonian liquid film and core fluid under influence of swirl, core flow, and gravit

    Density oscillations in trapped dipolar condensates

    Full text link
    We investigated the ground state wave function and free expansion of a trapped dipolar condensate. We find that dipolar interaction may induce both biconcave and dumbbell density profiles in, respectively, the pancake- and cigar-shaped traps. On the parameter plane of the interaction strengths, the density oscillation occurs only when the interaction parameters fall into certain isolated areas. The relation between the positions of these areas and the trap geometry is explored. By studying the free expansion of the condensate with density oscillation, we show that the density oscillation is detectable from the time-of-flight image.Comment: 7 pages, 9 figure

    OM Theory and V-duality

    Get PDF
    We show that the (M5, M2, M2′', MW) bound state solution of eleven dimensional supergravity recently constructed in hep-th/0009147 is related to the (M5, M2) bound state one by a finite Lorentz boost along a M5-brane direction perpendicular to the M2-brane. Given the (M5, M2) bound state as a defining system for OM theory and the above relation between this system and the (M5, M2, M2', MW) bound state, we test the recently proposed V-duality conjecture in OM theory. Insisting to have a decoupled OM theory, we find that the allowed Lorentz boost has to be infinitesimally small, therefore resulting in a family of OM theories related by Galilean boosts. We argue that such related OM theories are equivalent to each other. In other words, V-duality holds for OM theory as well. Upon compactification on either an electric or a `magnetic' circle (plus T-dualities as well), the V-duality for OM theory gives the known one for either noncommutative open string theories or noncommutative Yang-Mills theories. This further implies that V-duality holds in general for the little m-theory without gravity.Comment: 17 pages, typos corrected and references adde
    • …
    corecore