28 research outputs found

    Emergent simplicity in microbial community assembly

    Full text link
    Published in final edited form as: Science. 2018 August 03; 361(6401): 469–474. doi:10.1126/science.aat1168.A major unresolved question in microbiome research is whether the complex taxonomic architectures observed in surveys of natural communities can be explained and predicted by fundamental, quantitative principles. Bridging theory and experiment is hampered by the multiplicity of ecological processes that simultaneously affect community assembly in natural ecosystems. We addressed this challenge by monitoring the assembly of hundreds of soil- and plant-derived microbiomes in well-controlled minimal synthetic media. Both the community-level function and the coarse-grained taxonomy of the resulting communities are highly predictable and governed by nutrient availability, despite substantial species variability. By generalizing classical ecological models to include widespread nonspecific cross-feeding, we show that these features are all emergent properties of the assembly of large microbial communities, explaining their ubiquity in natural microbiomes.The funding for this work partly results from a Scialog Program sponsored jointly by the Research Corporation, for Science Advancement and. the Gordon and Betty Moore Foundation through grants to Yale University and Boston University by the Research Corporation and by the Simons Foundation. This work was also supported by a young; investigator award from the Human Frontier Science Program to A.S. (RGY0077/2016) and by NIH NIGMS grant 1R35GM119461 and a Simons Investigator as in the Mathematical Modeling of Living Systems (MMLS) to P.M.; D.S. and J.E.G. additionally acknowledge funding from the Defense Advanced Research Projects Agency (purchase request no. HR0011515303, contract no.. HR0011-15-0-0091), the U.S. Department of Energy (DE-SC0012627), the NIH (T32GM100842, 5R01DE024468, R01GM121950, and Sub_P30DK036836_P&F), the National Science Foundation (1457695), the Human Frontier Science Program (RGP0020/2016) and the Boston University Interdisciplinary Biomedical Research Office. (Research Corporation, for Science Advancement; Gordon and Betty Moore Foundation; Boston University by the Research Corporation; Simons Foundation.; RGY0077/2016 - uman Frontier Science Program; 1R35GM119461 - NIH NIGMS grant; Simons Investigator as in the Mathematical Modeling of Living Systems (MMLS); HR0011515303 - Defense Advanced Research Projects Agency; HR0011-15-0-0091 - Defense Advanced Research Projects Agency; T32GM100842 - NIH; 5R01DE024468 - NIH; R01GM121950 - NIH; ub_P30DK036836 - NIH; 1457695 - National Science Foundation; RGP0020/2016 - Human Frontier Science Program; Boston University Interdisciplinary Biomedical Research Office)Accepted manuscrip

    Adsorption of Extracellular Chromosomal DNA and Its Effects on Natural Transformation of Azotobacter vinelandii▿

    No full text
    To better understand the influence of environmental conditions on the adsorption of extracellular chromosomal DNA and its availability for natural transformation, the amount and conformation of adsorbed DNA were monitored under different conditions in parallel with transformation assays using the soil bacterium Azotobacter vinelandii. DNA adsorption was monitored using the technique of quartz crystal microbalance with dissipation (QCM-D). Both silica and natural organic matter (NOM) surfaces were evaluated in solutions containing either 100 mM NaCl or 1 mM CaCl2. The QCM-D data suggest that DNA adsorbed to silica surfaces has a more compact and rigid conformation in Ca2+ solution than in Na+ solution and that the reverse is true when DNA is adsorbed to NOM surfaces. While the amounts of DNA adsorbed on a silica surface were similar for Ca2+ and Na+ solutions, the amount of DNA adsorbed on an NOM-coated surface was higher in Ca2+ solution than in Na+ solution. Transformation frequencies for dissolved DNA and DNA adsorbed to silica and to NOM were 6 × 10−5, 5 × 10−5, and 2.5 × 10−4, respectively. For NOM-coated surfaces, transformation frequencies from individual experiments were 2- to 50-fold higher in the presence of Ca2+ than in the presence of Na+. The results suggest that groundwater hardness (i.e., Ca2+ concentration) will affect the amount of extracellular DNA adsorbed to the soil surface but that neither adsorption nor changes in the conformation of the adsorbed DNA will have a strong effect on the frequency of natural transformation of A. vinelandii

    Comprehensive Comparisons between Grafted Kynam Agarwood and Normal Agarwood on Traits, Composition, and In Vitro Activation of AMPK

    No full text
    Agarwood, a highly valuable resin/wood combination with diverse pharmacological activities but scarce supply, has a long history of being used as a medicine in several medical systems. Grafted Kynam agarwood (GKA) has been cultivated successfully recently and has the qualities meeting the definition of premium Kynam agarwood. However, there are few comprehensive comparisons between GKA and normal agarwood in terms of traits, global composition, and activity, and some key issues for GKA to be adopted into the traditional Chinese medical (TCM) system have not been elaborated. The two types of agarwood samples were evaluated in terms of trait characteristics, physicochemical indicators, key component groups, and global compositional profile. Furthermore, a molecular docking was performed to investigate the active ingredients. In vitro activity assays were performed to evaluate the activation of adenosine 5’-monophosphate (AMP)-activated protein kinase (AMPK) by GKA and normal agarwood. The results revealed that, overall, the traits, microscopic characteristics, chemical composition types, and bioactivity between GKA and normal agarwood were similar. The main differences were the content of resin (ethanolic extract content), the content of key component groups, and the composition of the different parent structural groups of 2-(2-phenethyl) chromones (PECs). The contents of total PEC and ethanol extract content of GKA were significantly higher than those of normal agarwood. The MS-based high-throughput analysis revealed that GKA has higher concentrations of sesquiterpenes and flindersia-type 2-(2-phenylethyl) chromones (FTPECs) (m/z 250-312) than normal agarwood. Molecular docking revealed that parent structural groups of FTPECs activated multiple signaling pathways, including the AMPK pathway, suggesting that FTPECs are major active components in GKA. The aim of this paper is to describe the intrinsic reasons for GKA as a high-quality agarwood and a potential source for novel drug development. We combined high-throughput mass spectrometry and multivariate statistical analysis to infer the different components of the two types of agarwood. Then we combined virtual screening and in vitro activity to construct a component/pharmacodynamic relationship to explore the causes of the activity differences between agarwood with different levels of quality and to identify potentially valuable lead compounds. This strategy can also be used for the comprehensive study of other TCMs with different qualities

    Functional attractors in microbial community assembly

    No full text
    For microbiome biology to become a more predictive science, we must identify which descriptive features of microbial communities are reproducible and predictable, which are not, and why. We address this question by experimentally studying parallelism and convergence in microbial community assembly in replicate glucose-limited habitats. Here, we show that the previously observed family-level convergence in these habitats reflects a reproducible metabolic organization, where the ratio of the dominant metabolic groups can be explained from a simple resource-partitioning model. In turn, taxonomic divergence among replicate communities arises from multistability in population dynamics. Multistability can also lead to alternative functional states in closed ecosystems but not in metacommunities. Our findings empirically illustrate how the evolutionary conservation of quantitative metabolic traits, multistability, and the inherent stochasticity of population dynamics, may all conspire to generate the patterns of reproducibility and variability at different levels of organization that are commonplace in microbial community assembly

    Flagella-Mediated Differences in Deposition Dynamics for <i>Azotobacter vinelandii</i> in Porous Media

    No full text
    A multiscale approach was designed to study the effects of flagella on deposition dynamics of <i>Azotobacter vinelandii</i> in porous media, independent of motility. In a radial stagnation point flow cell (RSPF), the deposition rate of a flagellated strain with limited motility, DJ77, was higher than that of a nonflagellated (Fla<sup>–</sup>) strain on quartz. In contrast, Fla<sup>–</sup> strain deposition exceeded that of DJ77 in two-dimensional silicon microfluidic models (micromodels) and in columns packed with glass beads. Both micromodel and column experiments showed decreasing deposition over time, suggesting that approaching cells were blocked from deposition by previously deposited cells. Modeling results showed that blocking became effective for DJ77 strain at lower ionic strengths (1 mM and 10 mM), while for the Fla<sup>–</sup> strain, blocking was similar at all ionic strengths. In late stages of micromodel experiments, ripening effects were also observed, and these appeared earlier for the Fla<sup>–</sup> strain. In RSPF and column experiments, deposition of the flagellated strain was influenced by ionic strength, while ionic strength dependence was not observed for the Fla<sup>–</sup> strain. The observations in all three setups suggested flagella affect deposition dynamics and, in particular, result in greater sensitivity to ionic strength

    Table_2_Traditional mineral medicine realgar and Realgar-Indigo naturalis formula potentially exerted therapeutic effects by altering the gut microbiota.xlsx

    No full text
    IntroductionRealgar has a long history ofuse in traditional medicines. However, the mechanism through which Realgar or Realgar-Indigo naturalis formula (RIF) exert therapeutic effects is only partially understood.MethodsIn this study, 60 feces and 60 ileum samples from rats administered with realgar or RIF were collected to examine the gut microbiota.ResultsThe results showed that realgar and RIF influenced different microbiota in both feces and ileum. Compared with realgar, RIF at low dosage (0.1701 g/3 ml) significantly increased the microbiota diversity. LEfSe and random forest analyses showed that the bacterium Bacteroidales was significantly altered after RIF administration, and it was predicted that these microorganisms contribute to the inorganic arsenic metabolic process.DiscussionOur results suggest that realgar and RIF may exert their therapeutic effects through influencing microbiota. The low dose of RIF had greater effects on increasing the diversity of microbiota, and Bacteroidales in feces might participate in the inorganic arsenic metabolic process to exert therapeutic effects for realgar.</p

    Data_Sheet_2_Traditional mineral medicine realgar and Realgar-Indigo naturalis formula potentially exerted therapeutic effects by altering the gut microbiota.docx

    No full text
    IntroductionRealgar has a long history ofuse in traditional medicines. However, the mechanism through which Realgar or Realgar-Indigo naturalis formula (RIF) exert therapeutic effects is only partially understood.MethodsIn this study, 60 feces and 60 ileum samples from rats administered with realgar or RIF were collected to examine the gut microbiota.ResultsThe results showed that realgar and RIF influenced different microbiota in both feces and ileum. Compared with realgar, RIF at low dosage (0.1701 g/3 ml) significantly increased the microbiota diversity. LEfSe and random forest analyses showed that the bacterium Bacteroidales was significantly altered after RIF administration, and it was predicted that these microorganisms contribute to the inorganic arsenic metabolic process.DiscussionOur results suggest that realgar and RIF may exert their therapeutic effects through influencing microbiota. The low dose of RIF had greater effects on increasing the diversity of microbiota, and Bacteroidales in feces might participate in the inorganic arsenic metabolic process to exert therapeutic effects for realgar.</p

    Table_1_Traditional mineral medicine realgar and Realgar-Indigo naturalis formula potentially exerted therapeutic effects by altering the gut microbiota.xlsx

    No full text
    IntroductionRealgar has a long history ofuse in traditional medicines. However, the mechanism through which Realgar or Realgar-Indigo naturalis formula (RIF) exert therapeutic effects is only partially understood.MethodsIn this study, 60 feces and 60 ileum samples from rats administered with realgar or RIF were collected to examine the gut microbiota.ResultsThe results showed that realgar and RIF influenced different microbiota in both feces and ileum. Compared with realgar, RIF at low dosage (0.1701 g/3 ml) significantly increased the microbiota diversity. LEfSe and random forest analyses showed that the bacterium Bacteroidales was significantly altered after RIF administration, and it was predicted that these microorganisms contribute to the inorganic arsenic metabolic process.DiscussionOur results suggest that realgar and RIF may exert their therapeutic effects through influencing microbiota. The low dose of RIF had greater effects on increasing the diversity of microbiota, and Bacteroidales in feces might participate in the inorganic arsenic metabolic process to exert therapeutic effects for realgar.</p
    corecore