79 research outputs found

    Remote Sensing of Environmental Changes in Cold Regions

    Get PDF
    This Special Issue gathers papers reporting recent advances in the remote sensing of cold regions. It includes contributions presenting improvements in modeling microwave emissions from snow, assessment of satellite-based sea ice concentration products, satellite monitoring of ice jam and glacier lake outburst floods, satellite mapping of snow depth and soil freeze/thaw states, near-nadir interferometric imaging of surface water bodies, and remote sensing-based assessment of high arctic lake environment and vegetation recovery from wildfire disturbances in Alaska. A comprehensive review is presented to summarize the achievements, challenges, and opportunities of cold land remote sensing

    STFNets: Learning Sensing Signals from the Time-Frequency Perspective with Short-Time Fourier Neural Networks

    Full text link
    Recent advances in deep learning motivate the use of deep neural networks in Internet-of-Things (IoT) applications. These networks are modelled after signal processing in the human brain, thereby leading to significant advantages at perceptual tasks such as vision and speech recognition. IoT applications, however, often measure physical phenomena, where the underlying physics (such as inertia, wireless signal propagation, or the natural frequency of oscillation) are fundamentally a function of signal frequencies, offering better features in the frequency domain. This observation leads to a fundamental question: For IoT applications, can one develop a new brand of neural network structures that synthesize features inspired not only by the biology of human perception but also by the fundamental nature of physics? Hence, in this paper, instead of using conventional building blocks (e.g., convolutional and recurrent layers), we propose a new foundational neural network building block, the Short-Time Fourier Neural Network (STFNet). It integrates a widely-used time-frequency analysis method, the Short-Time Fourier Transform, into data processing to learn features directly in the frequency domain, where the physics of underlying phenomena leave better foot-prints. STFNets bring additional flexibility to time-frequency analysis by offering novel nonlinear learnable operations that are spectral-compatible. Moreover, STFNets show that transforming signals to a domain that is more connected to the underlying physics greatly simplifies the learning process. We demonstrate the effectiveness of STFNets with extensive experiments. STFNets significantly outperform the state-of-the-art deep learning models in all experiments. A STFNet, therefore, demonstrates superior capability as the fundamental building block of deep neural networks for IoT applications for various sensor inputs

    STRESS ANALYSIS OF PLASTIC PIPE REINFORCED BY CROSS HELICALLY WOUND STEEL WIRES

    No full text
    ABSTRACT Polyethylene pipe reinforced by cross helically wound steel wires (PSP), which has excellent performance, is a new type of plastic-matrix steel composite pipe. PSP consists of three continuous layers, i.e., inner PE layer, composite layer and outer PE layer. Elastic parameters of the composite layer were obtained with series and parallel models. Solutions for elastic stresses and strains of the PSP under internal pressure, external pressure, and axial force were developed by using the three-dimensional (3-D) anisotropic elasticity. Good agreement between theoretical results and experimental data shows that the presented model can well predict stresses and strains of the PSP. KEYWORDS Composite materials, composite pipe, stress analysis, experimental investigation INTRODUCTION Plastic pipe reinforced by cross helically wound steel wires (PSP), a new type of plastic-matrix steel composite pipes developed in China, is extensively used in petroleum, chemical engineering, and municipal water supply, etc

    Dynamic changes in marker components during the stir-frying of Pharbitidis Semen, and network analysis of its potential effects on nephritis

    Get PDF
    Introduction: Pharbitidis Semen (PS) has been widely used in traditional Chinese medicine to treat several diseases such as nephritis. PS is usually stir-fried to enhance its therapeutic efficacy before use in clinical practice. However, the changes in phenolic acids during stir-frying and the mechanisms of their therapeutic effects on nephritis are still unclear.Methods: Here, we studied the processing-induced chemical changes and elucidated the mechanism of PS in the treatment of nephritis. We determined the levels of the 7 phenolic acids in raw PS (RPS) and stir-fried PS (SPS) using high-performance liquid chromatography, analyzed the dynamic compositional changes during stir-frying, and used network analysis and molecular docking to predict and verify compound targets and pathways corresponding to nephritis.Results: The dynamic changes in the 7 phenolic acids in PS during stir-frying are suggestive of a transesterification reaction. Pathway analysis revealed that the targets of nephritis were mainly enriched in the AGE-RAGE, hypoxia-inducible factor-1, interleukin-17, and tumor necrosis factor signaling pathways among others. Molecular docking results showed that the 7 phenolic acids had good binding ability with the key nephritic targets.Discussion: The potential pharmaceutical basis, targets, and mechanisms of PS in treating nephritis were explored. Our findings provide a scientific basis for the clinical use of PS in treating nephritis

    How Can Cities Respond to Flood Disaster Risks under Multi-Scenario Simulation? A Case Study of Xiamen, China

    Get PDF
    Flood disasters often have serious impacts on cities. Disaster prevention and mitigation schemes for flood disasters must be based on risk assessment. We constructed an indicator system for flood disaster risk assessment from the aspects of hazard factors, sensitivity to the environment, disaster vulnerability, flood disaster prevention, and resilience. Then we add the precipitation factor as a scenario parameter to the assessment of flood disasters, in order to assess the flood disaster risk under annual average precipitation scenarios, multi-year flood season average precipitation scenarios, and large typhoon precipitation scenarios. Xiamen is one of the cities with more serious flood disasters. We select Xiamen as an example and refer to existing indicators of flood disaster assessment. The results show that: (1) the coefficient of variation of flood disasters in Xiamen under the impact of large-scale typhoon precipitation is large; (2) the drainage and flood control capacity of Xiamen is generally insufficient, and the risk in the old city is high; (3) there are many flood-prone locations in Xiamen. Underpass interchanges, underground spaces, and urban villages have become the new key areas for flood control; and (4) the flood risk in the northern mountainous areas of Xiamen is the highest. Based on the assessment results, we further delineate the urban flood control zones and propose corresponding countermeasures. The study expands the research on flood disaster risk assessment, and also provides reference for relevant cities to deal with flood disasters
    corecore