71 research outputs found

    CiGNN: A Causality-informed and Graph Neural Network Based Framework for Cuffless Continuous Blood Pressure Estimation:A Causality-informed and Graph Neural Network Based Framework for Cuffless Continuous Blood Pressure Estimation

    Get PDF
    Causality holds profound potentials to dissipate confusion and improve accuracy in cuffless continuous blood pressure (BP) estimation, an area often neglected in current research. In this study, we propose a two-stage framework, CiGNN, that seamlessly integrates causality and graph neural network (GNN) for cuffless continuous BP estimation. The first stage concentrates on the generation of a causal graph between BP and wearable features from the the perspective of causal inference, so as to identify features that are causally related to BP variations. This stage is pivotal for the identification of novel causal features from the causal graph beyond pulse transit time (PTT). We found these causal features empower better tracking in BP changes compared to PTT. For the second stage, a spatio-temporal GNN (STGNN) is utilized to learn from the causal graph obtained from the first stage. The STGNN can exploit both the spatial information within the causal graph and temporal information from beat-by-beat cardiac signals for refined cuffless continuous BP estimation. We evaluated the proposed method with three datasets that include 305 subjects (102 hypertensive patients) with age ranging from 20-90 and BP at different levels, with the continuous Finapres BP as references. The mean absolute difference (MAD) for estimated systolic blood pressure (SBP) and diastolic blood pressure (DBP) were 3.77 mmHg and 2.52 mmHg, respectively, which outperformed comparison methods. In all cases including subjects with different age groups, while doing various maneuvers that induces BP changes at different levels and with or without hypertension, the proposed CiGNN method demonstrates superior performance for cuffless continuous BP estimation. These findings suggest that the proposed CiGNN is a promising approach in elucidating the causal mechanisms of cuffless BP estimation and can substantially enhance the precision of BP measurement

    ReContrast: Domain-Specific Anomaly Detection via Contrastive Reconstruction

    Full text link
    Most advanced unsupervised anomaly detection (UAD) methods rely on modeling feature representations of frozen encoder networks pre-trained on large-scale datasets, e.g. ImageNet. However, the features extracted from the encoders that are borrowed from natural image domains coincide little with the features required in the target UAD domain, such as industrial inspection and medical imaging. In this paper, we propose a novel epistemic UAD method, namely ReContrast, which optimizes the entire network to reduce biases towards the pre-trained image domain and orients the network in the target domain. We start with a feature reconstruction approach that detects anomalies from errors. Essentially, the elements of contrastive learning are elegantly embedded in feature reconstruction to prevent the network from training instability, pattern collapse, and identical shortcut, while simultaneously optimizing both the encoder and decoder on the target domain. To demonstrate our transfer ability on various image domains, we conduct extensive experiments across two popular industrial defect detection benchmarks and three medical image UAD tasks, which shows our superiority over current state-of-the-art methods.Comment: NeurIPS 2023 Poste

    Surface quality improvement for ultrasonic-assisted inner diameter sawing with six-axis force sensors

    Get PDF
    Ultrasonic-assisted inner diameter machining is a slicing method for hard and brittle materials. During this process, the sawing force is the main factor affecting the workpiece surface quality and tool life. Therefore, based on indentation fracture mechanics, a theoretical model of the cutting force of an ultrasound-assisted inner diameter saw is established in this paper for surface quality improvement. The cutting experiment was carried out with alumina ceramics (99%) as an exemplar of hard and brittle material. A six-axis force sensor was used to measure the sawing force in the experiment. The correctness of the theoretical model was verified by comparing the theoretical modeling with the actual cutting force, and the influence of machining parameters on the normal sawing force was evaluated. The experimental results showed that the ultrasonic-assisted cutting force model based on the six-axis force sensor proposed in this paper was more accurate. Compared with the regular tetrahedral abrasive model, the mean value and variance of the proposed model’s force prediction error were reduced by 5.08% and 2.56%. Furthermore, by using the proposed model, the sawing processing parameters could be updated to improve the slice surface quality from a roughness Sa value of 1.534 µm to 1.129 µm. The proposed model provides guidance for the selection of process parameters and can improve processing efficiency and quality in subsequent real-world production

    Complex clinical data and Gestational Diabetes Mellitus

    Get PDF
    This Innovation Forum brought together a multidisciplinary group of researchers, clinicians, data scientists, industry partners, NHS Digital, and others to discuss the opportunities and challenges for improving clinical care using complex clinical data. The workshop focussed on one specific clinical challenge, Gestational Diabetes Mellitus (GDM), with consideration of other data science challenges and solutions in pregnancy care more widely and other clinical conditions. The Forum was an opportunity to learn about specific data challenges researchers had experienced, learn from what has worked, and where further research is needed. We identified several opportunities for GDM data research in the UK, including the commissioning of the first national GDM audit and a need to focus on preventing type 2 diabetes after GDM in young women. The Forum identified six areas for future work and funding: (i) support for infrastructure to enable data science in this field; (ii) the need to map available data sources in the UK for pregnancy research; (iii) streamlined solutions for ethical approvals and regulatory support; (iv) improving data quality, linkage and access for researchers; (v) development of machine learning and statistical approaches; and (vi) the need to collaborate with clinicians, women and their families to make sure data science improves lives

    Assessment of Hypertension Using Clinical Electrocardiogram Features: A First-Ever Review

    Get PDF
    Hypertension affects an estimated 1.4 billion people and is a major cause of morbidity and mortality worldwide. Early diagnosis and intervention can potentially decrease cardiovascular events later in life. However, blood pressure (BP) measurements take time and require training for health care professionals. The measurements are also inconvenient for patients to access, numerous daily variables affect BP values, and only a few BP readings can be collected per session. This leads to an unmet need for an accurate, 24-h continuous, and portable BP measurement system. Electrocardiograms (ECGs) have been considered as an alternative way to measure BP and may meet this need. This review summarizes the literature published from January 1, 2010, to January 1, 2020, on the use of only ECG wave morphology to monitor BP or identify hypertension. From 35 articles analyzed (9 of those with no listed comorbidities and confounders), the P wave, QTc intervals and TpTe intervals may be promising for this purpose. Unfortunately, with the limited number of articles and the variety of participant populations, we are unable to make conclusions about the effectiveness of ECG-only BP monitoring. We provide 13 recommendations for future ECG-only BP monitoring studies and highlight the limited findings in pregnant and pediatric populations. With the advent of convenient and portable ECG signal recording in smart devices and wearables such as watches, understanding how to apply ECG-only findings to identify hypertension early is crucial to improving health outcomes worldwide
    corecore