246 research outputs found

    Potential energy surfaces of actinide and transfermium nuclei from multi-dimensional constraint covariant density functional theories

    Full text link
    Multi-dimensional constrained covariant density functional theories were developed recently. In these theories, all shape degrees of freedom \beta_{\lambda\mu} deformations with even \mu are allowed, e.g., \beta_{20}, \beta_{22}, \beta_{30}, \beta_{32}, \beta_{40}, \beta_{42}, \beta_{44}, and so on and the CDFT functional can be one of the following four forms: the meson exchange or point-coupling nucleon interactions combined with the non-linear or density-dependent couplings. In this contribution, some applications of these theories are presented. The potential energy surfaces of actinide nuclei in the (\beta_{20}, \beta_{22}, \beta_{30}) deformation space are investigated. It is found that besides the octupole deformation, the triaxiality also plays an important role upon the second fission barriers. The non-axial reflection-asymmetric \beta_{32} shape in some transfermium nuclei with N = 150, namely 246Cm, 248Cf, 250Fm, and 252No are studied.Comment: 7 pages, 6 figures; invited talk at the International Conference on Nuclear Structure and Related Topics, Jul 02-July 7, 2012, Dubn

    Multidimensionally-constrained relativistic mean-field study of triple-humped barriers in actinides

    Get PDF
    Potential energy surfaces (PES's) of actinide nuclei are characterized by a two-humped barrier structure. At large deformations beyond the second barrier the occurrence of a third one was predicted by Mic-Mac model calculations in the 1970s, but contradictory results were later reported. In this paper, triple-humped barriers in actinide nuclei are investigated with covariant density functional theory (CDFT). Calculations are performed using the multidimensionally-constrained relativistic mean field (MDC-RMF) model, with functionals PC-PK1 and DD-ME2. Pairing correlations are treated in the BCS approximation with a separable pairing force of finite range. Two-dimensional PES's of 226,228,230,232^{226,228,230,232}Th and 232,234,236,238^{232,234,236,238}U are mapped and the third minima on these surfaces are located. Then one-dimensional potential energy curves along the fission path are analyzed in detail and the energies of the second barrier, the third minimum, and the third barrier are determined. DD-ME2 predicts the occurrence of a third barrier in all Th nuclei and 238^{238}U. The third minima in 230,232^{230,232}Th are very shallow, whereas those in 226,228^{226,228}Th and 238^{238}U are quite prominent. With PC-PK1 a third barrier is found only in 226,228,230^{226,228,230}Th. Single-nucleon levels around the Fermi surface are analyzed in 226^{226}Th, and it is found that the formation of the third minimum is mainly due to the Z=90Z=90 proton energy gap at β201.5\beta_{20} \approx 1.5 and β300.7\beta_{30} \approx 0.7. The possible occurrence of a third barrier in actinide nuclei depends on the effective interaction used in multidimensional CDFT calculations. More pronounced minima are predicted by the DD-ME2 functional, as compared to the functional PC-PK1. The depth of the third well in Th isotopes decreases with increasing neutron number. The origin of the third minimum is due to the proton Z=90Z=90 shell gap at relevant deformations.Comment: 10 pages, 7 figures; Phys. Rev. C, in press; due to the limitation "The abstract field cannot be longer than 1,920 characters", the abstract appearing here is slightly shorter than that in the PDF fil

    A mutation in the interferon regulatory element of HBV may influence the response of interferon treatment in chronic hepatitis B patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A functional interferon regulatory element (IRE) has been found in the EnhI/X promoter region of hepatitis B virus (HBV) genome. The purpose of this study is to compare the gene order of responder and non-responder to interferon therapy in patients with chronic hepatitis B (CHB), so as to evaluate the relationship between IRE mutation and the response to interferon treatment for CHB patients.</p> <p>Results</p> <p>Synthetic therapeutic effect is divided into complete response (CR), partial response (PR) and non-response (NR). Among the 62 cases included in this study, 40 cases (64.5%) were in the response group (CR and PR) and 22 (35.5%) cases were in the NR group. Wild type sequence of HBV IRE TTTCACTTTC were found in 35 cases (56.5%), and five different IRE gene sequences. included TTTtACTTTC, TTTCAtTTTC, TTTtAtTTTC, TTTtACTTTt and cTTtACcTTC, were found in 22 cases (35.5%), 1 case (1.6%), 1 case (1.6%), 2 cases (3.2%) and 1 case (1.6%) respectively. There were 41.9%cases (26/62) with forth base C→T mutation, consisted of 32.5% (13/40) cases in response group and 59.1% (13/22) cases in NR group. Among the 35 cases with IRE sequences, there were 67.5% (27/40) cases in response group and 36.4% (8/22) in NR group, and the difference in IRE sequences between two groups was statistic significantly (P = 0.027). The result suggested that there is likely relationship between the forth base mutation (C→T) of IRE region and the response of HBV to Interferon therapy, and this mutation may partially decrease the inhibition effect of interferon on HBV.</p> <p>Conclusion</p> <p>The forth base C→T mutation in IRE element of HBV may partially influence the response of Interferon treatment in CHB patients.</p
    corecore