50 research outputs found

    Bearing capacity and failure mechanism of strip footings on anisotropic sand

    Get PDF
    Sand typically exhibits anisotropic internal structure (or fabric), and the fabric anisotropy has a dramatic influence on the mechanical behavior of sand. Meanwhile, the fabric evolves when sand is subjected to external loading. This eventually makes the response of strip footings on sand dependent on fabric anisotropy and fabric evolution. A numerical investigation on this effect is presented using a critical state sand model accounting for fabric evolution. The model parameters are determined based on plane strain and triaxial compression test data, and the model performance is validated by centrifuge tests for strip footings on dry Toyoura sand. The bearing capacity of strip footings is found to be dependent on the bedding plane orientation of dense sand. However, this effect vanishes as the sand density decreases, though the slope of the force-displacement curve is still lower for vertical bedding. Progressive failure is observed for all the simulations. General shear failure mode occurs in dense and medium dense sand, and the punching shear mode is the main failure mechanism for loose sand. In general shear failure, unsymmetrical slip lines develop for sand with an inclined bedding plane due to the noncoaxial sand behavior caused by fabric anisotropy. For strip footing on sand with horizontal bedding, the bearing capacity and failure mechanism are primarily affected by the sand density. The bearing capacity of a strip footing is higher when the sand fabric is more isotropic for the same soil density. An isotropic model can give significant overestimation on the bearing capacity of strip footings

    Effective skeleton stress and void ratio for constitutive modelling of fiber-reinforced sand

    Get PDF
    Inclusion of flexible fibers such as polypropylene and polyester is an effective method for soil improvement, as it significantly enhances the soil strength and ductility. A proper constitutive model is essential for assessing the stability and serviceability of fiber-reinforced slopes/foundations. A new method for constitutive modeling of fiber-reinforced sand (FRS) is proposed. It assumes that the strain of FRS is dependent on the deformation of the sand skeleton only, while the effective skeleton stress and effective skeleton void ratio, which should be used in describing the dilatancy, plastic hardening and elastic stiffness of FRS, are affected by fiber inclusion. The effective skeleton stress is dependent on the shear strain level, and the effective skeleton void ratio is affected by the fiber content and sample preparation method. A critical state FRS model in the triaxial stress space is proposed using the concept of effective skeleton stress and void ratio. Four parameters are introduced to characterize the effect of fiber inclusion on the mechanical behavior of sand, all of which can be easily determined based on triaxial test data on FRS, without measuring the stress–strain relationship of individual fibers. The model is validated by triaxial compression test results on four fiber-reinforced sands under loading conditions with various confining pressures, densities and stress paths. Potential improvement in the model for incorporating fiber orientation anisotropy is discussed

    Fractional elastoplastic constitutive model for soils based on a novel 3D fractional plastic flow rule

    Get PDF
    A novel three-dimensional (3D) fractional plastic flow rule that is not limited by the coordinate basis of the differentiable function is proposed based on the fractional derivative and the coordinate transformation. By introducing the 3D fractional plastic flow rule into the characteristic stress space, a 3D fractional elastoplastic model for soil is established for the first time. Only five material parameters with clear physical significance are required in the proposed model. The capability of the model in capturing the strength and deformation behaviour of soils under true 3D stress conditions is verified by comparing model predictions with test results

    A novel transversely isotropic strength criterion for soils based on a mobilized plane approach

    Get PDF
    The peak shear strength rules of transversely isotropic soils are stress state dependent and dependent on relative orientation between bedding plane and principal stress. Accordingly, the shear strength of transversely isotropic soils exhibits two primary characteristics: (i) the strength curve on the deviatoric plane is asymmetrical with respect to three principal stress axes; (ii) the shear strength changes with the direction angle of the bedding plane when the intermediate principal stress coefficient is a constant. In this paper, the mobilized plane is introduced and used to reveal the failure mechanism of soils. By projecting the microstructure tensor of transversely isotropic soils onto the normal of the mobilized plane, the directionality of the transversely isotropic soils is introduced into the friction rules on the mobilized plane, and a transversely isotropic strength parameter is proposed. The proposed strength parameter can extend isotropic strength criteria into transversely isotropic strength criteria. This mobilized plane approach is used to establish a novel transversely isotropic nonlinear unified strength criterion (TI-NUSC). The difficulty to establish a unified description of the asymmetrical strength curve and its evolution with direction angle is overcome by the established criterion. Comparisons between available test results and the TI-NUSC shows that the TI-NUSC can successfully describe these two primary peak strength characteristics

    A constitutive model for gassy clay

    Get PDF
    Fine-grained marine sediments often contain gas bubbles that can cause many geotechnical problems. This soil has a composite structure with gas bubbles fitting within the saturated soil matrix. The gas cavity has a detrimental effect on the soil stiffness and strength when they are filled with undissolved gas only. The gas cavity can be filled with gas and pore water due to ‘bubble flooding’. Bubble flooding has a beneficial effect on the soil stiffness and undrained shear strength because it makes the saturated soil matrix partially drained under a globally undrained condition. A critical state constitutive model for gassy clay is presented which accounts for the composite structure of the soil and bubble flooding. The gas cavity is assumed to have a detrimental effect on the plastic hardening of the saturated soil matrix. Some of the bubbles can be flooded by pore water from the saturated soil matrix which leads to higher mean effective stress of the saturated soil matrix. Consequently, both soil stiffness and strength increase. Only one new parameter is introduced to model the detrimental effect of gas bubbles on plastic hardening. The model has been validated by the results of three gassy clays

    Understanding PITX2-Dependent Atrial Fibrillation Mechanisms through Computational Models

    Get PDF
    From MDPI via Jisc Publications RouterHistory: accepted 2021-07-16, pub-electronic 2021-07-19Publication status: PublishedFunder: National Key Research and Development Program of China; Grant(s): 2019YFC0120100, 2019YFC0121907Funder: National Natural Science Foundation of China; Grant(s): 61901192Atrial fibrillation (AF) is a common arrhythmia. Better prevention and treatment of AF are needed to reduce AF-associated morbidity and mortality. Several major mechanisms cause AF in patients, including genetic predispositions to AF development. Genome-wide association studies have identified a number of genetic variants in association with AF populations, with the strongest hits clustering on chromosome 4q25, close to the gene for the homeobox transcription PITX2. Because of the inherent complexity of the human heart, experimental and basic research is insufficient for understanding the functional impacts of PITX2 variants on AF. Linking PITX2 properties to ion channels, cells, tissues, atriums and the whole heart, computational models provide a supplementary tool for achieving a quantitative understanding of the functional role of PITX2 in remodelling atrial structure and function to predispose to AF. It is hoped that computational approaches incorporating all we know about PITX2-related structural and electrical remodelling would provide better understanding into its proarrhythmic effects leading to development of improved anti-AF therapies. In the present review, we discuss advances in atrial modelling and focus on the mechanistic links between PITX2 and AF. Challenges in applying models for improving patient health are described, as well as a summary of future perspectives

    Nonlocal regularization of an anisotropic critical state model for sand

    No full text
    Many advanced constitutive models which can capture the strain-softening and state-dependent dilatancy response of sand have been developed. These models can give good prediction of the single soil element behaviour under various loading conditions. But the solution will be highly mesh-dependent when they are used in real boundary value problems due to the strain-softening. They can give mesh-dependent strain localization pattern and bearing capacity of foundations on sand. Nonlocal regularization of an anisotropic critical state sand model is presented. The evolution of void ratio which has a significant influence on strain-softening is assumed to depend on the volumetric strain increment of both the local and neighbouring integration points. The regularization method has been implemented using the explicit stress integration method. The nonlocal model has been used in simulating both drained plane strain compression and the response of a strip footing on dry sand. In plane strain compression, mesh-independent results for the force–displacement relationship and shear band thickness can be obtained when the mesh size is smaller than the internal length. The force–displacement relationship of strip footings predicted by the nonlocal model is much less mesh-sensitive than the local model prediction. The strain localization under the strip footing predicted by the nonlocal model is mesh independent. The regularization method is thus proper for application in practical geotechnical engineering problems

    Anticancer Effect of PS-T on the Experimental Hepatocellular Carcinoma

    No full text
    corecore