66,547 research outputs found
GRB 060206: Evidence of Precession of Central Engine
The high-redshift (z = 4.048) gamma-ray burst GRB 060206 showed unusual behavior, with a significant re-brightening about 3000 s after the burst. We assume that the central engine became active again 2000 s after the main burst and drove another more collimated off-axis jet. The two jets both interacted with the ambient medium and contributed to the whole emission. We numerically fit this optical afterglow from the two jets using the forward-shock model and the forward-reverse shock model. Combining with the zero time effect, we suggest that the fast rise at ~3000 s in the afterglow was due to the off-axis emission from the second jet. The precession of the torus or accretion disk of the gamma ray burst engine is the natural explanation for the symmetry axes of these two jets not to lie on the same line
GRB 060206: hints of precession of the central engine?
Aims. The high-redshift (z=4.048) gamma-ray burst GRB 060206 showed unusual behavior, with a significant rebrightening by a factor of ~4 at about 3000 s after the burst. We argue that this rebrightening implies that the central engine became active again after the main burst produced by the first ejecta, then drove another more collimated jet-like ejecta with a larger viewing angle. The two ejecta both interacted with the ambient medium, giving rise to forward shocks that propagated into the ambient medium and reverse shocks that penetrated into the ejecta. The total emission was a combination of the emissions from the reverse- and forward- shocked regions. We discuss how this combined emission accounts for the observed rebrightening.
Methods. We apply numerical models to calculate the light curves from the shocked regions, which include a forward shock originating in the first ejecta and a forward-reverse shock for the second ejecta.
Results. We find evidence that the central engine became active again 2000 s after the main burst. The combined emission produced by interactions of these two ejecta with the ambient medium can describe the properties of the afterglow of this burst. We argue that the rapid rise in brightness at ~3000 s in the afterglow is due to the off-axis emission from the second ejecta. The precession of the torus or accretion disk of the central engine is a natural explanation for the departure of the second ejecta from the line of sight
Comparisons and Applications of Four Independent Numerical Approaches for Linear Gyrokinetic Drift Modes
To help reveal the complete picture of linear kinetic drift modes, four
independent numerical approaches, based on integral equation, Euler initial
value simulation, Euler matrix eigenvalue solution and Lagrangian particle
simulation, respectively, are used to solve the linear gyrokinetic
electrostatic drift modes equation in Z-pinch with slab simplification and in
tokamak with ballooning space coordinate. We identify that these approaches can
yield the same solution with the difference smaller than 1\%, and the
discrepancies mainly come from the numerical convergence, which is the first
detailed benchmark of four independent numerical approaches for gyrokinetic
linear drift modes. Using these approaches, we find that the entropy mode and
interchange mode are on the same branch in Z-pinch, and the entropy mode can
have both electron and ion branches. And, at strong gradient, more than one
eigenstate of the ion temperature gradient mode (ITG) can be unstable and the
most unstable one can be on non-ground eigenstates. The propagation of ITGs
from ion to electron diamagnetic direction at strong gradient is also observed,
which implies that the propagation direction is not a decisive criterion for
the experimental diagnosis of turbulent mode at the edge plasmas.Comment: 12 pages, 10 figures, accept by Physics of Plasma
Extracting CP violation and strong phase in D decays by using quantum correlations in psi(3770)-> D0\bar{D}0 -> (V1V2)(V3V4) and psi(3770)->D0\bar{D}0 -> (V1V2)(K pi)
The charm quark offers interesting opportunities to cross-check the mechanism
of CP violation precisely tested in the strange and beauty sectors. In this
paper, we exploit the angular and quantum correlations in the D\bar{D} pairs
produced through the decay of the psi(3770) resonance in a charm factory to
investigate CP-violation in two different ways. We build CP-violating
observables in psi(3770) -> D\bar{D} -> (V_1V_2)(V_3 V_4) to isolate specific
New Physics effects in the charm sector. We also consider the case of psi(3770)
-> D\bar{D} -> (V_1V_2)(K\pi) decays, which provide a new way to measure the
strong phase difference delta between Cabibbo-favored and doubly-Cabibbo
suppressed D decays required in the determination of the CKM angle gamma.
Neglecting the systematics, we give a first rough estimate of the sensitivities
of these measurements at BES-III with an integrated luminosity of 20 fb^-1 at
psi(3770) peak and at a future Super tau-charm factory with a luminosity of
10^35 cm^-2.s^-1.Comment: 13 pages
- …
