149 research outputs found

    SCExAO, an instrument with a dual purpose: perform cutting-edge science and develop new technologies

    Get PDF
    The Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) instrument is an extremely modular high- contrast instrument installed on the Subaru telescope in Hawaii. SCExAO has a dual purpose. Its position in the northern hemisphere on a 8-meter telescope makes it a prime instrument for the detection and characterization of exoplanets and stellar environments over a large portion of the sky. In addition, SCExAO’s unique design makes it the ideal instrument to test innovative technologies and algorithms quickly in a laboratory setup and subsequently deploy them on-sky. SCExAO benefits from a first stage of wavefront correction with the facility adaptive optics AO188, and splits the 600-2400 nm spectrum towards a variety of modules, in visible and near infrared, optimized for a large range of science cases. The integral field spectrograph CHARIS, with its J, H or K-band high-resolution mode or its broadband low-resolution mode, makes SCExAO a prime instrument for exoplanet detection and characterization. Here we report on the recent developments and scientific results of the SCExAO instrument. Recent upgrades were performed on a number of modules, like the visible polarimetric module VAMPIRES, the high-performance infrared coronagraphs, various wavefront control algorithms, as well as the real-time controller of AO188. The newest addition is the 20k-pixel Microwave Kinetic Inductance Detector (MKIDS) Exoplanet Camera (MEC) that will allow for previously unexplored science and technology developments. MEC, coupled with novel photon-counting speckle control, brings SCExAO closer to the final design of future high-contrast instruments optimized for Giant Segmented Mirror Telescopes (GSMTs)

    Experimental study of a low-order wavefront sensor for the high-contrast coronagraphic imager EXCEDE

    Full text link
    The mission EXCEDE (EXoplanetary Circumstellar Environments and Disk Explorer), selected by NASA for technology development, is designed to study the formation, evolution and architectures of exoplanetary systems and characterize circumstellar environments into stellar habitable zones. It is composed of a 0.7 m telescope equipped with a Phase-Induced Amplitude Apodization Coronagraph (PIAA-C) and a 2000-element MEMS deformable mirror, capable of raw contrasts of 1e-6 at 1.2 lambda/D and 1e-7 above 2 lambda/D. One of the key challenges to achieve those contrasts is to remove low-order aberrations, using a Low-Order WaveFront Sensor (LOWFS). An experiment simulating the starlight suppression system is currently developed at NASA Ames Research Center, and includes a LOWFS controlling tip/tilt modes in real time at 500 Hz. The LOWFS allowed us to reduce the tip/tilt disturbances to 1e-3 lambda/D rms, enhancing the previous contrast by a decade, to 8e-7 between 1.2 and 2 lambda/D. A Linear Quadratic Gaussian (LQG) controller is currently implemented to improve even more that result by reducing residual vibrations. This testbed shows that a good knowledge of the low-order disturbances is a key asset for high contrast imaging, whether for real-time control or for post processing.Comment: 12 pages, 20 figures, proceeding of the SPIE conference Optics+Photonics, San Diego 201

    Diffraction-limited polarimetric imaging of protoplanetary disks and mass-loss shells with VAMPIRES

    Get PDF
    Both the birth and death of a stellar system are areas of key scientific importance. Whether it's understanding the process of planetary formation in a star's early years, or uncovering the cause of the enormous mass-loss that takes place during a star's dying moments, a key to scientific understanding lies in the inner few AU of the circumstellar environment. Corresponding to scales of 10s of milli-arcseconds, these observations pose a huge technical challenge due to the high angular-resolutions and contrasts required. A major stumbling block is the problem of the Earth's own atmospheric turbulence. The other difficulty is that precise calibration is required to combat the extremely high contrast ratios and high resolutions faced. By taking advantage of the fact that starlight scattered by dust in the circumstellar region is polarized, differential polarimetry can help achieve this calibration. Spectral features can also be utilized

    The Subaru Coronagraphic Extreme AO project

    Get PDF
    High contrast coronagraphic imaging is a challenging task for telescopes with central obscurations and thick spider vanes, such as the Subaru Telescope. Our group is currently assembling an extreme AO bench designed as an upgrade for the newly commissionned coronagraphic imager instrument HiCIAO, that addresses these difficulties. The so-called SCExAO system combines a high performance PIAA coronagraph to a MEMS-based wavefront control system that will be used in complement of the Subaru AO188 system. We present and demonstrate good performance of two key optical components that suppress the spider vanes, the central obscuration and apodize the beam for high contrast coronagraphy, while preserving the throughput and the angular resolution.Comment: 4 pages, 2nd Subaru International Conference on Exoplanets and Disks: Their Formation and Diversity, Keauhou - Hawaii, 9-12 March 200

    On-sky demonstration of low-order wavefront sensing and control with focal plane phase mask coronagraphs

    Get PDF
    The ability to characterize exoplanets by spectroscopy of their atmospheres requires direct imaging techniques to isolate planet signal from the bright stellar glare. One of the limitations with the direct detection of exoplanets, either with ground- or space-based coronagraphs, is pointing errors and other low-order wavefront aberrations. The coronagraphic detection sensitivity at the diffraction limit therefore depends on how well low-order aberrations upstream of the focal plane mask are corrected. To prevent starlight leakage at the inner working angle of a phase mask coronagraph, we have introduced a Lyot-based low-order wavefront sensor (LLOWFS), which senses aberrations using the rejected starlight diffracted at the Lyot plane. In this paper, we present the implementation, testing and results of LLOWFS on the Subaru Coronagraphic Extreme Adaptive Optics system (SCExAO) at the Subaru Telescope. We have controlled thirty-five Zernike modes of a H-band vector vortex coronagraph in the laboratory and ten Zernike modes on sky with an integrator control law. We demonstrated a closed-loop pointing residual of 0.02 mas in the laboratory and 0.15 mas on sky for data sampled using the minimal 2-second exposure time of the science camera. We have also integrated the LLOWFS in the visible high-order control loop of SCExAO, which in closed-loop operation has validated the correction of the non-common path pointing errors between the infrared science channel and the visible wavefront sensing channel with pointing residual of 0.23 mas on sky.Comment: 12 pages, 15 figures, Accepted and scheduled for publication in September 2015 issue of the PAS

    Phase-induced amplitude apodization complex mask coronagraph tolerancing and analysis

    Get PDF
    Phase-Induced Amplitude Apodization Complex Mask Coronagraphs (PIAACMC) offer high-contrast performance at a small inner-working angle (≈\approx 1 λ\lambda/D) with high planet throughput (>> 70%). The complex mask is a multi-zone, phase-shifting mask comprised of tiled hexagons which vary in depth. Complex masks can be difficult to fabricate as there are many micron-scale hexagonal zones (>> 500 on average) with continuous depths ranging over a few microns. Ensuring the broadband PIAACMC design performance carries through to fabricated devices requires that these complex masks are manufactured to within well-defined tolerances. We report on a simulated tolerance analysis of a "toy" PIAACMC design which characterizes the effect of common microfabrication errors on on-axis contrast performance using a simple Monte Carlo method. Moreover, the tolerance analysis provides crucial information for choosing a fabrication process which yields working devices while potentially reducing process complexity. The common fabrication errors investigated are zone depth discretization, zone depth errors, and edge artifacts between zones.Comment: 8 pages, 6 figures, SPIE Astronomical Telescopes + Instrumentatio
    • 

    corecore