3,653 research outputs found

    Three-particle correlations in QCD jets and beyond

    Get PDF
    In this paper, we present a more detailed version of our previous work for three-particle correlations in quark and gluon jets [1]. We give theoretical results for this observable in the double logarithmic approximation and the modified leading logarithmic approximation. In both resummation schemes, we use the formalism of the generating functional and solve the evolution equations analytically from the steepest descent evaluation of the one-particle distribution. In addition, in this paper we include predictions beyond the limiting spectrum approximation and study this observable near the hump of the single inclusive distribution. We thus provide a further test of the local parton hadron duality (LPHD) and make predictions for the LHC. The computation of higher rank correlators is presented in the double logarithmic approximation and shown to be rather cumbersome.Comment: 34 pages and 14 figure

    PSUDOC - A Simple Diagnostic Program

    Get PDF
    This report describes research done at the Artificial Intelligence Laboratory of the Massachusetts Institute of Technology. Support for the laboratory's research is provided in part by the Advanced Research Projects Agency of the Department of Defense under Office of Naval Research contract N00014-75-C-0643.This paper describes PSUDOC, a very simple LISP program to carry out some medical diagnosis tasks. The program's domain is a subset of clinical medicine characterized by patients presenting with edema and/or hematuria. The program's goal is to go from the presenting symptoms to a hypothesis of the underlying disease state. The program uses a variation of simple tree searching strategies called ETS.MIT Artificial Intelligence Laboratory Department of Defense Advanced Research Projects Agenc

    Quantification of environmentally-assisted cracking mechanisms with high- resolution characterisation

    Get PDF
    Please click Additional Files below to see the full abstrac

    Depinning and dynamics of AC driven vortex lattices in random media

    Get PDF
    We study the different dynamical regimes of a vortex lattice driven by AC forces in the presence of random pinning via numerical simulations. The behaviour of the different observables is charaterized as a function of the applied force amplitude for different frequencies. We discuss the inconveniences of using the mean velocity to identify the depinnig transition and we show that instead, the mean quadratic displacement of the lattice is the relevant magnitude to characterize different AC regimes. We discuss how the results depend on the initial configuration and we identify new hysteretic effects which are absent in the DC driven systems.Comment: 6 pages, 4 figure

    Temporal Correlations and Persistence in the Kinetic Ising Model: the Role of Temperature

    Full text link
    We study the statistical properties of the sum St=∫0tdt′σt′S_t=\int_{0}^{t}dt' \sigma_{t'}, that is the difference of time spent positive or negative by the spin σt\sigma_{t}, located at a given site of a DD-dimensional Ising model evolving under Glauber dynamics from a random initial configuration. We investigate the distribution of StS_{t} and the first-passage statistics (persistence) of this quantity. We discuss successively the three regimes of high temperature (T>TcT>T_{c}), criticality (T=TcT=T_c), and low temperature (T<TcT<T_{c}). We discuss in particular the question of the temperature dependence of the persistence exponent θ\theta, as well as that of the spectrum of exponents θ(x)\theta(x), in the low temperature phase. The probability that the temporal mean St/tS_t/t was always larger than the equilibrium magnetization is found to decay as t−θ−12t^{-\theta-\frac12}. This yields a numerical determination of the persistence exponent θ\theta in the whole low temperature phase, in two dimensions, and above the roughening transition, in the low-temperature phase of the three-dimensional Ising model.Comment: 21 pages, 11 PostScript figures included (1 color figure

    A simple motion-planning algorithm for general robot manipulators

    Full text link

    Visible Decomposition: Real-Time Path Planning in Large Planar Environments

    Get PDF
    We describe a method called Visible Decomposition for computing collision-free paths in real time through a planar environment with a large number of obstacles. This method divides space into local visibility graphs, ensuring that all operations are local. The search time is kept low since the number of regions is proved to be small. We analyze the computational demands of the algorithm and the quality of the paths it produces. In addition, we show test results on a large simulation testbed
    • …
    corecore