9 research outputs found

    AI is a viable alternative to high throughput screening: a 318-target study

    Get PDF
    : High throughput screening (HTS) is routinely used to identify bioactive small molecules. This requires physical compounds, which limits coverage of accessible chemical space. Computational approaches combined with vast on-demand chemical libraries can access far greater chemical space, provided that the predictive accuracy is sufficient to identify useful molecules. Through the largest and most diverse virtual HTS campaign reported to date, comprising 318 individual projects, we demonstrate that our AtomNet® convolutional neural network successfully finds novel hits across every major therapeutic area and protein class. We address historical limitations of computational screening by demonstrating success for target proteins without known binders, high-quality X-ray crystal structures, or manual cherry-picking of compounds. We show that the molecules selected by the AtomNet® model are novel drug-like scaffolds rather than minor modifications to known bioactive compounds. Our empirical results suggest that computational methods can substantially replace HTS as the first step of small-molecule drug discovery

    Canagliflozin and renal outcomes in type 2 diabetes and nephropathy

    Get PDF
    BACKGROUND Type 2 diabetes mellitus is the leading cause of kidney failure worldwide, but few effective long-term treatments are available. In cardiovascular trials of inhibitors of sodium–glucose cotransporter 2 (SGLT2), exploratory results have suggested that such drugs may improve renal outcomes in patients with type 2 diabetes. METHODS In this double-blind, randomized trial, we assigned patients with type 2 diabetes and albuminuric chronic kidney disease to receive canagliflozin, an oral SGLT2 inhibitor, at a dose of 100 mg daily or placebo. All the patients had an estimated glomerular filtration rate (GFR) of 30 to <90 ml per minute per 1.73 m2 of body-surface area and albuminuria (ratio of albumin [mg] to creatinine [g], >300 to 5000) and were treated with renin–angiotensin system blockade. The primary outcome was a composite of end-stage kidney disease (dialysis, transplantation, or a sustained estimated GFR of <15 ml per minute per 1.73 m2), a doubling of the serum creatinine level, or death from renal or cardiovascular causes. Prespecified secondary outcomes were tested hierarchically. RESULTS The trial was stopped early after a planned interim analysis on the recommendation of the data and safety monitoring committee. At that time, 4401 patients had undergone randomization, with a median follow-up of 2.62 years. The relative risk of the primary outcome was 30% lower in the canagliflozin group than in the placebo group, with event rates of 43.2 and 61.2 per 1000 patient-years, respectively (hazard ratio, 0.70; 95% confidence interval [CI], 0.59 to 0.82; P=0.00001). The relative risk of the renal-specific composite of end-stage kidney disease, a doubling of the creatinine level, or death from renal causes was lower by 34% (hazard ratio, 0.66; 95% CI, 0.53 to 0.81; P<0.001), and the relative risk of end-stage kidney disease was lower by 32% (hazard ratio, 0.68; 95% CI, 0.54 to 0.86; P=0.002). The canagliflozin group also had a lower risk of cardiovascular death, myocardial infarction, or stroke (hazard ratio, 0.80; 95% CI, 0.67 to 0.95; P=0.01) and hospitalization for heart failure (hazard ratio, 0.61; 95% CI, 0.47 to 0.80; P<0.001). There were no significant differences in rates of amputation or fracture. CONCLUSIONS In patients with type 2 diabetes and kidney disease, the risk of kidney failure and cardiovascular events was lower in the canagliflozin group than in the placebo group at a median follow-up of 2.62 years

    Identification of small-molecule inhibitors of calcineurin-NFATc signaling that mimic the PxIxIT motif of calcineurin binding partners

    No full text
    Calcineurin (CN), a serine and threonine protein phosphatase that depends on Ca(2+) and calmodulin for its activity, is the target of the immunosuppressant drugs cyclosporin A (CsA) and tacrolimus (FK506). CN dephosphorylates and activates members of the NFATc (nuclear factor of activated T cells) family of transcription factors in T cells by binding to their conserved PxIxIT motif. Upon dephosphorylation, NFATc proteins translocate to the nucleus, where they stimulate the expression of genes encoding cytokines and chemokines that are required for T cell proliferation and the immune response. We performed a pharmacophore-based virtual screening of ~5.5 million commercially available, "drug-like" compounds to identify nonpeptidic compounds that inhibited the CN-dependent activation of NFATc signaling and that could serve as potential drug candidates for immunosuppressive therapy. Of 32 compounds that mimicked the PxIxIT motif, 7 competed with NFATc for binding to CN in vitro without interfering with the phosphatase activity of CN. Furthermore, in activated human CD4(+) T cells, four of the seven compounds inhibited the expression of NFATc-dependent genes, cytokine production, and cell proliferation, suggesting that these may have therapeutic potential as immunosuppressive agents

    The transcriptional regulator Sin3A balances IL-17A and Foxp3 expression in primary CD4 T cells

    No full text
    The Sin3 transcriptional regulator homolog A (Sin3A) is the core member of a multiprotein chromatin-modifying complex. Its inactivation at the CD4/CD8 double-negative stage halts further thymocyte development. Among various functions, Sin3A regulates STAT3 transcriptional activity, central to the differentiation of Th17 cells active in inflammatory disorders and opportunistic infections. To further investigate the consequences of conditional Sin3A inactivation in more mature precursors and post-thymic T cell, we have generated CD4-Cre and CD4-CreERT2 Sin3AF/F mice. Sin3A inactivation in vivo hinders both thymocyte development and peripheral T-cell survival. In vitro, in Th17 skewing conditions, Sin3A-deficient cells proliferate and acquire memory markers and yet fail to properly upregulate Il17a, Il23r, and Il22. Instead, IL-2+ and FOXP3+ are mostly enriched for, and their inhibition partially rescues IL-17A+ T cells. Notably, Sin3A deletion also causes an enrichment of genes implicated in the mTORC1 signaling pathway, overt STAT3 activation, and aberrant cytoplasmic ROR¿t accumulation. Thus, together our data unveil a previously unappreciated role for Sin3A in shaping critical signaling events central to the acquisition of immunoregulatory T-cell phenotypes

    The Toll like receptor 4 ligand cold-inducible RNA-binding protein as vaccination platform against cancer

    No full text
    Tumor infiltrating lymphocytes have been associated with a better prognostic and with higher response rates in patients treated with checkpoint inhibiting antibodies, suggesting that strategies promoting tumor inflammation may enhance the efficacy of these currently available therapies. Our aim was thus to develop a new vaccination platform based on cold-inducible RNA binding protein (CIRP), an endogenous TLR4 ligand generated during inflammatory processes, and characterize whether it was amenable to combination with checkpoint inhibitors. In vitro, CIRP induced dendritic cell activation, migration and enhanced presentation of CIRP-bound antigens to T-cells. Accordingly, antigen conjugation to CIRP conferred immunogenicity, dependent on immunostimulatory and antigen-targeting capacities of CIRP. When applied in a therapeutic setting, vaccination led to CD8-dependent tumor rejection in several tumor models. Moreover, immunogenicity of this vaccination platform was enhanced not only by combination with additional adjuvants, but also with antibodies blocking PD-1/PD-L1, CTLA-4 and IL-10, immunosuppressive molecules usually present in the tumor environment and also induced by the vaccine. Therefore, priming with a CIRP-based vaccine combined with immune checkpoint-inhibiting antibodies rejected established B16-OVA tumors. Finally, equivalent activation and T-cell stimulatory effects were observed when using CIRP in vitro with human cells, suggesting that CIRP-based vaccination strategies could be a valuable clinical tool to include in combinatorial immunotherapeutic strategies in cancer patients

    BACH2 restricts NK cell maturation and function, limiting immunity to cancer metastasis

    No full text
    Natural killer (NK) cells are critical to immune surveillance against infections and cancer. Their role in immune surveillance requires that NK cells are present within tissues in a quiescent state. Mechanisms by which NK cells remain quiescent in tissues are incompletely elucidated. The transcriptional repressor BACH2 plays a critical role within the adaptive immune system, but its function within innate lymphocytes has been unclear. Here, we show that BACH2 acts as an intrinsic negative regulator of NK cell maturation and function. BACH2 is expressed within developing and mature NK cells and promotes the maintenance of immature NK cells by restricting their maturation in the presence of weak stimulatory signals. Loss of BACH2 within NK cells results in accumulation of activated NK cells with unrestrained cytotoxic function within tissues, which mediate augmented immune surveillance to pulmonary cancer metastasis. These findings establish a critical function of BACH2 as a global negative regulator of innate cytotoxic function and tumor immune surveillance by NK cells

    Targeting the extra domain A of fibronectin for cancer therapy with CAR-T cells

    Get PDF
    Background One of the main difficulties of adoptive cell therapies with chimeric antigen receptor (CAR)-T cells in solid tumors is the identification of specific target antigens. The tumor microenvironment can present suitable antigens for CAR design, even though they are not expressed by the tumor cells. We have generated a CAR specific for the splice variant extra domain A (EDA) of fibronectin, which is highly expressed in the tumor stroma of many types of tumors but not in healthy tissues. Methods EDA expression was explored in RNA-seq data from different human tumor types and by immunohistochemistry in paraffin-embedded tumor biopsies. Murine and human anti-EDA CAR-T cells were prepared using recombinant retro/lentiviruses, respectively. The functionality of EDA CAR-T cells was measured in vitro in response to antigen stimulation. The antitumor activity of EDA CAR-T cells was measured in vivo in C57BL/6 mice challenged with PM299L-EDA hepatocarcinoma cell line, in 129Sv mice-bearing F9 teratocarcinoma and in NSG mice injected with the human hepatocarcinoma cell line PLC. Results EDA CAR-T cells recognized and killed EDA-expressing tumor cell lines in vitro and rejected EDA-expressing tumors in immunocompetent mice. Notably, EDA CAR-T cells showed an antitumor effect in mice injected with EDA-negative tumor cells lines when the tumor stroma or the basement membrane of tumor endothelial cells express EDA. Thus, EDA CAR-T administration delayed tumor growth in immunocompetent 129Sv mice challenged with teratocarcinoma cell line F9. EDA CAR-T treatment exerted an antiangiogenic effect and significantly reduced gene signatures associated with epithelial-mesenchymal transition, collagen synthesis, extracellular matrix organization as well as IL-6-STAT5 and KRAS pathways. Importantly, the human version of EDA CAR, that includes the human 41BB and CD3 zeta endodomains, exerted strong antitumor activity in NSG mice challenged with the human hepatocarcinoma cell line PLC, which expresses EDA in the tumor stroma and the endothelial vasculature. EDA CAR-T cells exhibited a tropism for EDA-expressing tumor tissue and no toxicity was observed in tumor bearing or in healthy mice. Conclusions These results suggest that targeting the tumor-specific fibronectin splice variant EDA with CAR-T cells is feasible and offers a therapeutic option that is applicable to different types of cancer

    Targeting the extra domain A of fibronectin for cancer therapy with CAR-T cells

    Get PDF
    Background One of the main difficulties of adoptive cell therapies with chimeric antigen receptor (CAR)-T cells in solid tumors is the identification of specific target antigens. The tumor microenvironment can present suitable antigens for CAR design, even though they are not expressed by the tumor cells. We have generated a CAR specific for the splice variant extra domain A (EDA) of fibronectin, which is highly expressed in the tumor stroma of many types of tumors but not in healthy tissues. Methods EDA expression was explored in RNA-seq data from different human tumor types and by immunohistochemistry in paraffin-embedded tumor biopsies. Murine and human anti-EDA CAR-T cells were prepared using recombinant retro/lentiviruses, respectively. The functionality of EDA CAR-T cells was measured in vitro in response to antigen stimulation. The antitumor activity of EDA CAR-T cells was measured in vivo in C57BL/6 mice challenged with PM299L-EDA hepatocarcinoma cell line, in 129Sv mice-bearing F9 teratocarcinoma and in NSG mice injected with the human hepatocarcinoma cell line PLC. Results EDA CAR-T cells recognized and killed EDA-expressing tumor cell lines in vitro and rejected EDA-expressing tumors in immunocompetent mice. Notably, EDA CAR-T cells showed an antitumor effect in mice injected with EDA-negative tumor cells lines when the tumor stroma or the basement membrane of tumor endothelial cells express EDA. Thus, EDA CAR-T administration delayed tumor growth in immunocompetent 129Sv mice challenged with teratocarcinoma cell line F9. EDA CAR-T treatment exerted an antiangiogenic effect and significantly reduced gene signatures associated with epithelial-mesenchymal transition, collagen synthesis, extracellular matrix organization as well as IL-6-STAT5 and KRAS pathways. Importantly, the human version of EDA CAR, that includes the human 41BB and CD3 zeta endodomains, exerted strong antitumor activity in NSG mice challenged with the human hepatocarcinoma cell line PLC, which expresses EDA in the tumor stroma and the endothelial vasculature. EDA CAR-T cells exhibited a tropism for EDA-expressing tumor tissue and no toxicity was observed in tumor bearing or in healthy mice. Conclusions These results suggest that targeting the tumor-specific fibronectin splice variant EDA with CAR-T cells is feasible and offers a therapeutic option that is applicable to different types of cancer

    Preclinical models for prediction of immunotherapy outcomes and immune evasion mechanisms in genetically heterogeneous multiple myeloma

    No full text
    The historical lack of preclinical models reflecting the genetic heterogeneity of multiple myeloma (MM) hampers the advance of therapeutic discoveries. To circumvent this limitation, we screened mice engineered to carry eight MM lesions (NF-kappaB, KRAS, MYC, TP53, BCL2, cyclin D1, MMSET/NSD2 and c-MAF) combinatorially activated in B lymphocytes following T cell-driven immunization. Fifteen genetically diverse models developed bone marrow (BM) tumors fulfilling MM pathogenesis. Integrative analyses of 500 mice and 1,000 patients revealed a common MAPK-MYC genetic pathway that accelerated time to progression from precursor states across genetically heterogeneous MM. MYC-dependent time to progression conditioned immune evasion mechanisms that remodeled the BM microenvironment differently. Rapid MYC-driven progressors exhibited a high number of activated/exhausted CD8+ T cells with reduced immunosuppressive regulatory T (Treg) cells, while late MYC acquisition in slow progressors was associated with lower CD8+ T cell infiltration and more abundant Treg cells. Single-cell transcriptomics and functional assays defined a high ratio of CD8+ T cells versus Treg cells as a predictor of response to immune checkpoint blockade (ICB). In clinical series, high CD8+ T/Treg cell ratios underlie early progression in untreated smoldering MM, and correlated with early relapse in newly diagnosed patients with MM under Len/Dex therapy. In ICB-refractory MM models, increasing CD8+ T cell cytotoxicity or depleting Treg cells reversed immunotherapy resistance and yielded prolonged MM control. Our experimental models enable the correlation of MM genetic and immunological traits with preclinical therapy responses, which may inform the next-generation immunotherapy trials
    corecore