5 research outputs found

    Chemical pressure effects on the spectroscopic properties of Nd3+-doped gallium nano-garnets

    Full text link
    [EN] Nd3+-doped RE3Ga5O12 (RE = Gd, Y, and Lu) nano-crystalline garnets of 40-45 nm in size have been synthesized by a sol-gel method. With the decrease of the RE atom size, the chemical pressure related to the decreasing volumes of the GaO4 tetrahedral, GaO6 octahedral and REO8 dodecahedral units drive the nano-garnets toward a more compacted structure, which is evidenced by the change of the vibrational phonon mode frequencies. The chemical pressure also increases the crystal-field strength felt by the RE3+ ions while decreases the orthorhombic distortion of the REO8 local environment. These effects alter the absorption and emission properties of the Nd3+ ion measured in the near-infrared luminescence range from 0.87 to 1.43 ¿m associated with the 4 F3/2¿4 IJ (J = 9/2, 11/2, 13/2) transitions. The 4 F3/2 luminescence decay curves show non-exponential behavior due to dipole-dipole energy transfer interactions among Nd3+ ions that increases with pressure.Authors are grateful to The Governments of Spain and India for the Indo-Spanish Joint Programme of Bilateral Cooperation in Science and Technology (PRI-PIBIN-2011-1153/DST-INT-Spain-P-38-11). Dr. Venkatramu is grateful to DAE-BRNS, Government of India for the award of DAE Research Award for Young Scientist (No. 2010/20/34/5/BRNS/2223). This work have been partially supported by MINECO under The National Program of Materials (MAT2013-46649-C4-2-P/-3-P/-4-P), The Consolider-Ingenio 2010 Program (MALTA CSD2007-00045), by Fundacion CajaCanarias (ENER-01), and by the EU-FEDER funds. V. Monteseguro wishes to thank MICINN for the FPI grant (BES-2011-044596). Authors also thank Agencia Canaria de Investigacion, Innovacion y Sociedad de la Informacion for the funds given to Universidad de La Laguna, co-financed by The European Social Fund by a percentage of 85%.Monteseguro, V.; Rathaiah, M.; Linganna, K.; Lozano-Gorrin, AD.; Hernandez-Rodriguez, MA.; Martin, IR.; Babu, P.... (2015). Chemical pressure effects on the spectroscopic properties of Nd3+-doped gallium nano-garnets. Optical Materials Express. 5(8):1661-1673. https://doi.org/10.1364/OME.5.001661S1661167358Pollnau, M., Hardman, P. ., Clarkson, W. ., & Hanna, D. . (1998). Upconversion, lifetime quenching, and ground-state bleaching in Nd3+:LiYF4. Optics Communications, 147(1-3), 203-211. doi:10.1016/s0030-4018(97)00524-5Brandle, C. D., & Barns, R. L. (1974). Crystal stoichiometry of Czochralski grown rare-earth gallium garnets. Journal of Crystal Growth, 26(1), 169-170. doi:10.1016/0022-0248(74)90223-1Venkatramu, V., Giarola, M., Mariotto, G., Enzo, S., Polizzi, S., Jayasankar, C. K., … Speghini, A. (2010). Nanocrystalline lanthanide-doped Lu3Ga5O12garnets: interesting materials for light-emitting devices. Nanotechnology, 21(17), 175703. doi:10.1088/0957-4484/21/17/175703Speghini, A., Piccinelli, F., & Bettinelli, M. (2011). Synthesis, characterization and luminescence spectroscopy of oxide nanopowders activated with trivalent lanthanide ions: The garnet family. Optical Materials, 33(3), 247-257. doi:10.1016/j.optmat.2010.10.039Krsmanović, R., Morozov, V. A., Lebedev, O. I., Polizzi, S., Speghini, A., Bettinelli, M., & Tendeloo, G. V. (2007). Structural and luminescence investigation on gadolinium gallium garnet nanocrystalline powders prepared by solution combustion synthesis. Nanotechnology, 18(32), 325604. doi:10.1088/0957-4484/18/32/325604Naccache, R., Vetrone, F., Speghini, A., Bettinelli, M., & Capobianco, J. A. (2008). Cross-Relaxation and Upconversion Processes in Pr3+ Singly Doped and Pr3+/Yb3+ Codoped Nanocrystalline Gd3Ga5O12: The Sensitizer/Activator Relationship. The Journal of Physical Chemistry C, 112(20), 7750-7756. doi:10.1021/jp711494dAntic-Fidancev, E., Hölsä, J., Lastusaari, M., & Lupei, A. (2001). Dopant-host relationships in rare-earth oxides and garnets doped with trivalent rare-earth ions. Physical Review B, 64(19). doi:10.1103/physrevb.64.195108Rodríguez-Carvajal, J. (1993). Recent advances in magnetic structure determination by neutron powder diffraction. Physica B: Condensed Matter, 192(1-2), 55-69. doi:10.1016/0921-4526(93)90108-iMonteseguro, V., Rodríguez-Hernández, P., Ortiz, H. M., Venkatramu, V., Manjón, F. J., Jayasankar, C. K., … Muñoz, A. (2015). Structural, elastic and vibrational properties of nanocrystalline lutetium gallium garnet under high pressure. Physical Chemistry Chemical Physics, 17(14), 9454-9464. doi:10.1039/c4cp05903dRay, S., León-Luis, S. F., Manjón, F. J., Mollar, M. A., Gomis, Ó., Rodríguez-Mendoza, U. R., … Lavín, V. (2014). Broadband, site selective and time resolved photoluminescence spectroscopic studies of finely size-modulated Y2O3:Eu3+ phosphors synthesized by a complex based precursor solution method. Current Applied Physics, 14(1), 72-81. doi:10.1016/j.cap.2013.07.027Nekvasil, V. (1978). The Crystal Field for Nd3+ in Garnets. Physica Status Solidi (b), 87(1), 317-323. doi:10.1002/pssb.2220870137Rodríguez-Mendoza, U. R., León-Luis, S. F., Muñoz-Santiuste, J. E., Jaque, D., & Lavín, V. (2013). Nd3+-doped Ca3Ga2Ge3O12garnet: A new optical pressure sensor. Journal of Applied Physics, 113(21), 213517. doi:10.1063/1.4809217Kaminska, A., Buczko, R., Paszkowicz, W., Przybylińska, H., Werner-Malento, E., Suchocki, A., … Saxena, S. (2011). Merging of the4F3/2level states of Nd3+ions in the photoluminescence spectra of gadolinium-gallium garnets under high pressure. Physical Review B, 84(7). doi:10.1103/physrevb.84.075483Allik, T. H., Stewart, S. A., Sardar, D. K., Quarles, G. J., Powell, R. C., Morrison, C. A., … Pinto, A. A. (1988). Preparation, structure, and spectroscopic properties ofNd3+:{La1−xLux}3[Lu1−yGay]2Ga3O12crystals. Physical Review B, 37(16), 9129-9139. doi:10.1103/physrevb.37.9129Wu, K., Yao, B., Zhang, H., Yu, H., Wang, Z., Wang, J., & Jiang, M. (2010). Growth and properties of Nd:Lu3Ga5O12 laser crystal by floating-zone method. Journal of Crystal Growth, 312(24), 3631-3636. doi:10.1016/j.jcrysgro.2010.09.029Jia, Z., Arcangeli, A., Tao, X., Zhang, J., Dong, C., Jiang, M., … Tonelli, M. (2009). Efficient Nd3+→Yb3+ energy transfer in Nd3+,Yb3+:Gd3Ga5O12 multicenter garnet crystal. Journal of Applied Physics, 105(8), 083113. doi:10.1063/1.3115442Guillot-Noel, O., Bellamy, B., Viana, B., & Gourier, D. (1999). Correlation between rare-earth oscillator strengths and rare-earth–valence-band interactions in neodymium-dopedYMO4(M=V,P, As),Y3Al5O12,andLiYF4matrices. Physical Review B, 60(3), 1668-1677. doi:10.1103/physrevb.60.1668Demidovich, A. A., Shkadarevich, A. P., Danailov, M. B., Apai, P., Gasmi, T., Gribkovskii, V. P., … Batay, L. E. (1998). Comparison of cw laser performance of Nd:KGW, Nd:YAG, Nd:BEL, and Nd:YVO 4 under laser diode pumping. Applied Physics B: Lasers and Optics, 67(1), 11-15. doi:10.1007/s003400050467Inokuti, M., & Hirayama, F. (1965). Influence of Energy Transfer by the Exchange Mechanism on Donor Luminescence. The Journal of Chemical Physics, 43(6), 1978-1989. doi:10.1063/1.1697063Lupei, V., & Lupei, A. (2000). Emission dynamics of the4F3/2level ofNd3+in YAG at low pump intensities. Physical Review B, 61(12), 8087-8098. doi:10.1103/physrevb.61.8087Maeda, K., Wada, N., Umino, M., Abe, M., Takada, Y., Nakano, N., & Kuroda, H. (1984). Concentration Dependence of Fluorescence Lifetime of Nd3+-Doped Gd3Ga5O12Lasers. Japanese Journal of Applied Physics, 23(Part 2, No. 10), L759-L760. doi:10.1143/jjap.23.l759Geusic, J. E., Marcos, H. M., & Van Uitert, L. G. (1964). LASER OSCILLATIONS IN Nd‐DOPED YTTRIUM ALUMINUM, YTTRIUM GALLIUM AND GADOLINIUM GARNETS. Applied Physics Letters, 4(10), 182-184. doi:10.1063/1.1753928Löhring, J., Nicklaus, K., Kujath, N., & Hoffmann, D. (2007). Diode pumped Nd:YGG laser for direct generation of pulsed 935 nm radiation for water vapour measurements. Solid State Lasers XVI: Technology and Devices. doi:10.1117/12.708220Maunier, C., Doualan, J. L., Moncorgé, R., Speghini, A., Bettinelli, M., & Cavalli, E. (2002). Growth, spectroscopic characterization, and laser performance of Nd:LuVO_4, a new infrared laser material that is suitable for diode pumping. Journal of the Optical Society of America B, 19(8), 1794. doi:10.1364/josab.19.00179
    corecore