59 research outputs found

    Uukuniemi Virus as a Tick-Borne Virus Model.

    Get PDF
    International audienceIn the last decade, novel tick-borne pathogenic phleboviruses in the family Bunyaviridae, all closely related to Uukuniemi virus (UUKV), have emerged on different continents. To reproduce the tick-mammal switch in vitro, we first established a reverse genetics system to rescue UUKV with a genome close to that of the authentic virus isolated from the Ixodes ricinus tick reservoir. The IRE/CTVM19 and IRE/CTVM20 cell lines, both derived from I. ricinus, were susceptible to the virus rescued from plasmid DNAs and supported production of the virus over many weeks, indicating that infection was persistent. The glycoprotein GC was mainly highly mannosylated on tick cell-derived viral progeny. The second envelope viral protein, GN, carried mostly N-glycans not recognized by the classical glycosidases peptide-N-glycosidase F (PNGase F) and endoglycosidase H (Endo H). Treatment with β-mercaptoethanol did not impact the apparent molecular weight of GN On viruses originating from mammalian BHK-21 cells, GN glycosylations were exclusively sensitive to PNGase F, and the electrophoretic mobility of the protein was substantially slower after the reduction of disulfide bonds. Furthermore, the amount of viral nucleoprotein per focus forming unit differed markedly whether viruses were produced in tick or BHK-21 cells, suggesting a higher infectivity for tick cell-derived viruses. Together, our results indicate that UUKV particles derived from vector tick cells have glycosylation and structural specificities that may influence the initial infection in mammalian hosts. This study also highlights the importance of working with viruses originating from arthropod vector cells in investigations of the cell biology of arbovirus transmission and entry into mammalian hosts. Tick-borne phleboviruses represent a growing threat to humans globally. Although ticks are important vectors of infectious emerging diseases, previous studies have mainly involved virus stocks produced in mammalian cells. This limitation tends to minimize the importance of host alternation in virus transmission to humans and initial infection at the molecular level. With this study, we have developed an in vitro tick cell-based model that allows production of the tick-borne Uukuniemi virus to high titers. Using this system, we found that virions derived from tick cells have specific structural properties and N-glycans that may enhance virus infectivity for mammalian cells. By shedding light on molecular aspects of tick-derived viral particles, our data illustrate the importance of considering the host switch in studying early virus-mammalian receptor/cell interactions. The information gained here lays the basis for future research on not only tick-borne phleboviruses but also all viruses and other pathogens transmitted by ticks

    A pan-European epidemiological study reveals honey bee colony survival depends on beekeeper education and disease control

    Get PDF
    Reports of honey bee population decline has spurred many national efforts to understand the extent of the problem and to identify causative or associated factors. However, our collective understanding of the factors has been hampered by a lack of joined up trans-national effort. Moreover, the impacts of beekeeper knowledge and beekeeping management practices have often been overlooked, despite honey bees being a managed pollinator. Here, we established a standardised active monitoring network for 5 798 apiaries over two consecutive years to quantify honey bee colony mortality across 17 European countries. Our data demonstrate that overwinter losses ranged between 2% and 32%, and that high summer losses were likely to follow high winter losses. Multivariate Poisson regression models revealed that hobbyist beekeepers with small apiaries and little experience in beekeeping had double the winter mortality rate when compared to professional beekeepers. Furthermore, honey bees kept by professional beekeepers never showed signs of disease, unlike apiaries from hobbyist beekeepers that had symptoms of bacterial infection and heavy Varroa infestation. Our data highlight beekeeper background and apicultural practices as major drivers of honey bee colony losses. The benefits of conducting trans-national monitoring schemes and improving beekeeper training are discussed

    Cell Biology of Viral Infections

    No full text
    Viruses exhibit an elegant simplicity, as they are so basic, but so frightening. Although only a few are life threatening, they have substantial implications for human health and the economy, as exemplified by the ongoing coronavirus pandemic. Viruses are rather small infectious agents found in all types of life forms, from animals and plants to prokaryotes and archaebacteria. They are obligate intracellular parasites, and as such, subvert many molecular and cellular processes of the host cell to ensure their own replication, amplification, and subsequent spread. This special issue addresses the cell biology of viral infections based on a collection of original research articles, communications, opinions, and reviews on various aspects of virus-host cell interactions. Together, these articles not only provide a glance into the latest research on the cell biology of viral infections, but also include novel technological developments

    Le virus de la fièvre de la vallée du Rift et son étonnante protéine NSs

    No full text
    International audienceRift Valley Fever Virus (RVFV) is an emerging zoonotic pathogen transmitted to humans and livestock through mosquito bites, which was first isolated in Kenya in 1930. The virus is classified by the WHO among the pathogens for which there is an urgent need to develop research, diagnostics, and therapies. However, the efforts developed to control the virus remain limited, and the virus is not well characterized. In this article, we will introduce RVFV and then focus on its virulence factor, the nonstructural protein NSs. We will mainly discuss the ability of this viral protein to form amyloid-like fibrils and its implication in the neurotoxicity associated with RVFV infection.Le virus de la fièvre de la vallée du Rift (VFVR) est un agent pathogène transmis à l’homme et au bétail par la piqûre de moustiques. Ce virus, découvert au Kenya en 1930, est considéré par l’Organisation mondiale de la santé comme présentant un risque important de provoquer de vastes épidémies. Les moyens dédiés à la lutte contre le VFVR restent toutefois particulièrement limités et le virus est mal connu. Dans cette Synthèse, nous nous attacherons à présenter ce virus avant de nous intéresser plus spécifiquement à son facteur de virulence, la protéine NSs. Nous discuterons la capacité de cette protéine virale à former des fibrilles de type amyloïde et son implication dans la neurotoxicité du virus chez les animaux infectés

    Recent Progress in Bunyavirus Research

    Get PDF
    The Bunyaviridae is the largest family of RNA viruses, with over 350 isolates worldwide distributed into five genera (i.e., Hantavirus, Orthobunyavirus, Nairovirus, Tospovirus, and Phlebovirus). Many of these viruses are significant human or agricultural pathogens. The increasing number of reports on new emerging bunyaviruses and infection episodes makes it essential that we obtain a comprehensive understanding of bunyaviruses and their infection mechanisms. Although all bunyaviruses possesses a tripartite, negative-sense (or ambi-sense) RNA genome, they exhibit substantial differences in their structure, genome organization and replication strategies, which make functional interpolation across genus boundaries difficult. Fortunately, the bunyavirus field has witnessed many exciting new findings and breakthroughs in recent years. These discoveries span a wide spectrum of research areas, including structural characterization of viruses and viral proteins, the identification of new viruses, investigations into host switch and vectors of transmission, genome-based analysis of virus evolution and phylogenetic lineages, the development of new research tools, such as replicons and reverse genetics, molecular characterization of the virus life cycle at the cell level (i.e., cell entry, replication, transcription, translation, genome packaging, reassortment, and virus assembly, etc.), studies of virus–host interactions and host antiviral defense, the development of vaccines/drugs and the use of bunyaviruses for novel applications. This book includes both research and review papers that together provide a glimpse into the latest research on bunyaviruses and, at the same time, highlight some of the important research achievements made in recent years. Study topics of both a fundamental and applied nature are collated. An informed perspective for future research directions is provided and can stimulate research in some of the understudied areas

    Rift Valley fever virus: a new avenue of research on the biological functions of amyloids?

    No full text
    International audienceRift Valley fever is a mosquito-borne viral zoonosis that was first discovered in the Great Rift Valley, Kenya, in 1930. Rift Valley fever virus (RVFV) primarily infects domestic animals and humans, with clinical outcomes ranging from self-limiting febrile illness to acute hepatitis and encephalitis. The virus left Africa a few decades ago, and there is a risk of introduction into southern Europe and Asia. From this perspective, we introduce RVFV and focus on the capacity of its virulence factor, the nonstructural protein NSs, to form amyloid-like fibrils. Here, we discuss the implications for the NSs biological function, the ability of RVFV to evade innate immunity, and RVFV virulence and neurotoxicity

    Rôles des lectines de type C L-SIGN et DC-SIGN dans l'infection par le virus de l'hépatite C

    No full text
    PARIS-BIUSJ-Thèses (751052125) / SudocPARIS-BIUSJ-Physique recherche (751052113) / SudocSudocFranceF

    Dynamics of Virus-Receptor Interactions in Virus Binding, Signaling, and Endocytosis

    No full text
    During viral infection the first challenge that viruses have to overcome is gaining access to the intracellular compartment. The infection process starts when the virus contacts the surface of the host cell. A complex series of events ensues, including diffusion at the host cell membrane surface, binding to receptors, signaling, internalization, and delivery of the genetic information. The focus of this review is on the very initial steps of virus entry, from receptor binding to particle uptake into the host cell. We will discuss how viruses find their receptor, move to sub-membranous regions permissive for entry, and how they hijack the receptor-mediated signaling pathway to promote their internalization
    • …
    corecore