15 research outputs found

    Sub-attomolar detection of cholera toxin using a label-free capacitive immunosensor

    No full text
    A label-free immunosensor for the direct detection of cholera toxin (CT) at sub-attomolar level has been developed based on potential-step capacitance measurements. Anti-CT antibody was adsorbed on gold nanoparticles (AuNPs) incorporated on a polytyramine-modified gold electrode. The concentration of CT was determined by detecting the change of capacitance caused by the formation of antibody-antigen complexes. By using AuNPs adsorbed to the sensing surface, the signal was dramatically increased leading to a significantly more sensitive assay. In fact, under optimum conditions the immunosensor could detect CT concentration with a limit of detection of 9 x 10(-20) M or 0.09 aM, with a dynamic range between 0.1 aM and 10 pM. Good analytical reproducibility could be obtained by injecting CT up to 36 times with an RSD of 2.5%. In addition, good performance of the developed immunosensor was achieved when applied to turbid water samples collected from a local stream that were spiked with CT. (c) 2010 Elsevier B.V. All rights reserved

    A Label-Free Photoluminescence Genosensor Using Nanostructured Magnesium Oxide for Cholera Detection

    Get PDF
    Nanomaterial-based photoluminescence (PL) diagnostic devices offer fast and highly sensitive detection of pesticides, DNA, and toxic agents. Here we report a label-free PL genosensor for sensitive detection of Vibrio cholerae that is based on a DNA hybridization strategy utilizing nanostructured magnesium oxide (nMgO; size >30 nm) particles. The morphology and size of the synthesized nMgO were determined by transmission electron microscopic (TEM) studies. The probe DNA (pDNA) was conjugated with nMgO and characterized by X-ray photoelectron and Fourier transform infrared spectroscopic techniques. The target complementary genomic DNA (cDNA) isolated from clinical samples of V. cholerae was subjected to DNA hybridization studies using the pDNA-nMgO complex and detection of the cDNA was accomplished by measuring changes in PL intensity. The PL peak intensity measured at 700 nm (red emission) increases with the increase in cDNA concentration. A linear range of response in the developed PL genosensor was observed from 100 to 500 ng/μL with a sensitivity of 1.306 emi/ng, detection limit of 3.133 ng/μL and a regression coefficient (R2) of 0.987. These results show that this ultrasensitive PL genosensor has the potential for applications in the clinical diagnosis of cholera
    corecore