3,674 research outputs found
Dietary fibre concentrates produced from papaya by-products for agroindustrial waste valorisation
In this work, papaya agroindustrial wastes were treated with ethanol and subsequently dehydrated to produce pulp or peel dietary fibre concentrates (DFCs). Hot air convection (CV) and microwave (MW) assisted dehydration were studied. The DFCs produced were mainly composed by cell wall polymers such as cellulose, lignin, proteins and non-cellulosic carbohydrates. It was found that convective drying produced DFCs with lower uronic acid content than microwave drying. Besides, pulp DFCs dehydrated by MW presented higher values for hydration properties, compared to those reported in literature. Peel DFCs presented better antioxidant properties than those from the pulp. Use of peel tissue, as well as CV produced DFCs with higher values of glass transition temperature. The characteristics found in the DFCs allow concluding that these products may be added in a diverse range of food products, granting benefits that would normally be obtained using several additives.Fil: Nieto Calvache, Jhon Edinson. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Industrias; Argentina. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas; ArgentinaFil: de Escalada Pla, Marina Francisca. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Industrias; Argentina. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas; ArgentinaFil: Gerschenson, Lia Noemi. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Industrias; Argentina. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas; Argentin
Monitoring biotransformations in polyamide fibres
The enzymatic hydrolysis of polyamide fibres yields amino and carboxylic groups. These groups can be found in solution treatments as polyamide monomers and soluble oligomers. The amino groups can also be found at the surface of the fibres as end group chains. In this paper we report two methods to quantify the formation of these groups as a result of the enzymatic action. Soluble amino groups can be quantified with 2,4,6-trinitrobenzenesulfonic acid (TNBS), which yields a coloured complex which can be determined spectrophotometrically. The amino groups on the fibre surface can be quantified by reaction with a wool reactive dye and determination of colour intensities after a dyeing procedure below the glass transition temperature of polyamide
Hydroxyl Radical Modification of Immunoglobulin G Generated Cross-Reactive Antibodies: Its Potential Role in Systemic Lupus Erythematosus
Objective Role of reactive oxygen species (ROS) modified human Immunoglobulin G (IgG) in systemic lupus erythematosus (SLE) has been investigated. Methods Human IgG was modified by hydroxyl-radicals. Immunogenicity of native and modified human IgG was probed by inducing polyclonal antibodies in rabbits. Cross-reactions of induced antibodies with nucleic acid, chromatin, different blood proteins and their ROS modified conformers were determined by competitive inhibition ELISA. The binding characteristics of circulating autoantibodies in SLE patients (n = 72) against native and modified IgG were screened by direct binding and competition ELISA and the results were compared with healthy age-matched controls (n = 39). Results Induced antibodies against ROS-modified human IgG exhibited diverse antigen binding characteristics. Native DNA, native chromatin and their ROS-modified conformers were found to be effective inhibitors of induced antibody-immunogen interaction. Induced antibodies against native human IgG showed negligible binding to the above mentioned nucleic acid antigens. SLE sera (48.6%) showed strong binding to ROS-human IgG in comparison with its native analogue ( P < 0.01). Normal human sera (NHS) showed negligible binding with either antigen ( P > 0.05). Conclusion ROS-induced modifications in human IgG present neo-epitopes, and make it a potential immunogen. The induced antibodies against ROS-modified human IgG resembled the diverse antigen-binding characteristics of naturally occurring SLE anti-DNA autoantibodies. ROS-modified IgG may be one of the factors for the induction of circulating SLE autoantibodies
The placental transport of [<sup>3</sup>H]vitamin K<sub>1</sub> in rats
In this paper we describe the placental transport of [3H]vitamin K1 in pregnant rats during the first 24 h after the oral administration of the vitamin. Vitamin K1 in the fetal livers ranged from 0.13% (3 h) to 2% (24 h) of the values found in the corresponding maternal livers. In spite of the low placental transfer of vitamin K, we found no accumulation of coagulation factor precursors in the fetal rat liver microsomes as could be expected in vitamin K deficiency. Moreover, we could not demonstrate any difference between adult and fetal rat liver microsomes with regard to the sensitivity for warfarin. From these results we conclude that a substantial placental barrier exists for the transport of pharmacological amounts of vitamin K1 but that under physiological conditions sufficient vitamin K1 appears to be present in the fetal liver to ensure a full carboxylation reaction. The vitamin K-dependent carboxylase activity rate of adult and fetal rat liver microsomes was comparable, indicating that the newborn rat has an adequate carboxylating system
Phosphoproteins and protein-kinase activity in isolated envelopes of pea (Pisum sativum L.) chloroplasts
A protein kinase was found in envelope membranes of purified pea (Pisum sativum L.) chloroplasts. Separation of the two envelope membranes showed that most of the enzyme activity was localized in the outer envelope. The kinase was activated by Mg2+ and inhibited by ADP and pyrophosphate. It showed no response to changes in pH in the physiological range (pH 7-8) or conventional protein substrates. Up to ten phosphorylated proteins could be detected in the envelope-membrane fraction. The molecular weights of these proteins, as determined by polyacrylamide-gel electrophoresis were: two proteins higher than 145 kDa, 97, 86, 62, 55, 46, 34 and 14 kDa. The 86-kDa band being the most pronounced. Experiments with separated inner and outer envelopes showed that most labeled proteins are also localized in the outer-envelope fraction. The results indicate a major function of the outer envelope in the communication between the chloroplast and the parent cell
Adenylate effects on protein phosphorylation in the interenvelope lumen of pea chloroplasts
A 64-kilodalton (kDa) protein, situated in the lumen between the inner and outer envelopes of pea (Pisum sativum L.) chloroplasts (Soll and Bennett 1988, Eur. J. Biochem., 175, 301â307) is shown to undergo reversible phosphorylation in isolated mixed envelope vesicles. It is the most conspicuously labelled protein after incubation of envelopes with 33 nmol·1-1 [-32P]ATP whereas incubation with 50 mol·1-1 [-32P]ATP labels most prominently two outer envelope proteins (86 and 23 kDa). Half-maximum velocity for phosphorylation of the 64-kDa protein occurs with 200 nmol·1-1 ATP, and around 40 mol·1-1 ATP for phosphorylation of the 86- and 23-kDa proteins, indicating the operation of two distinct kinases. GGuanosine-, uridine-, cytidine 5-triphosphate and AMP are poor inhibitors of the labelling of the 64-kDa protein with [-32P]ATP. On the other hand, ADP has a potent influence on the extent of labelling (half-maximal inhibition at 1â5 mol·1-1). The ADP-dependent appearance of 32P in ATP indicates that ADP acts by reversal of kinase activity and not as a competitive inhibitor. However, the most rapid loss of 32P from pre-labelled 64-kDa protein occurs when envelope vesicles are incubated with ATP t1/2=15 s at 20 molsd1-1 ATP). This induced turnover of phosphate appears to be responsible for the rapid phosphoryl turnover seen in situ
The formation of homogentisate in the biosynthesis of tocopherol and plastoquinone in spinach chloroplasts
Homogentisate is the precursor in the biosynthesis of -tocopherol and plastoquinone-9 in chloroplasts. It is formed of 4-hydroxyphenylpyruvate of the shikimate pathway by the 4-hydroxyphenylpyruvate dioxygenase. In experiments with spinach the dioxygenase was shown to be localized predominatedly in the chloroplasts. Envelope membranes exhibit the highest specific activity, however, because of the high stromal portion of chloroplasts, 60â80% of the total activity is housed in the stroma. The incorporation of 4-hydroxyphenylpyruvate into 2-methyl-6-phytylquinol as the first intermediate in the tocopherol synthesis by the two-step-reaction: 4-Hydroxyphenylpyruvate Homogentisate 2-Methyl-6-phytylquinol was demonstrated by using envelope membranes. Homogentisate originates directly from 4-hydroxyphenylpyruvate of the shikimate pathway. Additionally, a bypass exists in chloroplasts which forms 4-hydroxyphenylpyruvate from tyrosine by an L-amino-acid oxidase of the thylakoids and in peroxisomes by a transaminase reaction. Former results about the dioxygenase in peroxisomes were verified
Effects of Diabetes and Insulin on α-amylase Messenger RNA Levels in Rat Parotid Glands
Previous studies have shown that amylase levels are reduced significantly in the pancreas and parotid gland of diabetic rats and that insulin reverses this effect and increases the secretory protein levels. In the pancreas, these changes in amylase protein levels are accompanied by parallel changes in amylase mRNA levels. In the present study, the effects of diabetes and subsequent insulin treatments on contents (per cell) of amylase protein and its mRNA in parotid glands were compared in rats rendered diabetic with an injection of a beta-cell toxin, streptozotocin (STZ). Both amylase protein and its mRNA contents were reduced significantly in diabetic rats, compared with control rats, and this reduction was reversed following insulin injections of diabetic rats. In insulin-injected diabetic rats, amylase protein contents increased before a detectable increase in amylase mRNA levels was seen. The mRNA contents of a non-secretory protein, actin, did not change during diabetogenesis or subsequent insulin treatments. The reductions in parotid contents of amylase and its mRNA in diabetic rats and the reversal of these changes by insulin are similar to those changes that occur in the pancreas under the same conditions. However, the magnitude of these changes in parotid glands was much smaller than in the pancreas, and the effect of insulin on amylase mRNA synthesis was not as immediate as in the latter gland.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/67977/2/10.1177_00220345900690081001.pd
Utilization and metabolism of palmityl and oleoyl fatty acids and alcohols in caecal enterocytes of Atlantic salmon (Salmo salar L.)
The substitution of fish oil with wax ester-rich calanoid copepod-derived oil in diets for carnivorous fish, such as Atlantic salmon, has previously indicated a lower lipid digestibility. This suggests that the fatty alcohols (FAlc) present in wax esters may be a poorer substrate for intestinal enzymes than the fatty acids (FA) in triacylglycerol, the major lipid in fish oil. The hypothesis tested was that the possible lower utilization of dietary FAlc by salmon enterocytes is at the level of uptake and that subsequent intracellular metabolism was identical to that of FA. A dual-labelled FAlc-FA metabolism assay was employed to determine simultaneous FAlc and FA uptake and relative utilisation in enterocytes isolated from pyloric caeca of Atlantic salmon fed either a diet supplemented with fish oil or wax ester-rich Calanus oil. The diets were fed for 10 weeks before caecal enterocytes from each dietary group were isolated and incubated with equimolar mixtures of either [1-14C]16:0 FA and [9,10(n)-3H]16:0 FAlc, or [1-14C]18:1n-9 FA and [9,10(n)-3H]18:1n-9 FAlc. Uptake was measured after 2 h with relative utilization of labelled FAlc and FA calculated as a percentage of uptake. Differences in uptake were observed, with FA showing higher uptake than FAlc, and 18:1 chains a higher uptake than 16:0. A proportion of unesterified FAlc was possibly recovered in the cells, but the majority of FALc was recovered in lipid classes such as triacylglycerol and phospholipids indicating substantial conversion of FAlc to FA followed by esterification. However, incorporation of FA and FAlc into esterified lipids was higher when derived from FA than from FAlc. Twenty-five to fifty percentage of the absorbed 16:0 FA was recovered in TAG fraction of the enterocytes compared with fifteen to seventy-five percentage of 18:1 FA. Twenty to thirty percentage of the absorbed 16:0 FA was recovered in the PC fraction of the enterocytes compared with only five to fifteen percentage of the 18:1 FA. Less than 15% of the fatty chains taken up by the cells was used for energy production, with significantly higher oxidation of 18:1 in enterocytes from fish fed the fish oil diet compared to the Calanus oil diet. However, overall, dietary copepod oil had little effect on FAlc and FA metabolism. Metabolic modification by elongation and/or desaturation was generally low at 1-5% of uptake. We conclude that our hypothesis was generally proved in that the uptake of FAlc by salmon enterocytes was lower than the uptake of FA and that subsequent intracellular metabolism of FAlc was similar to that of FA. However, unesterified FAlc was possibly recovered in the cells suggesting that the conversion to FA may not be concomitant with uptake
Characterization of the GlnK protein of Escherichia coli
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75120/1/j.1365-2958.1999.01349.x.pd
- âŠ