25 research outputs found

    Mineralogical and Chemical Characteristics of Some Natural Jarosites

    Get PDF
    This paper presents a detailed study of the mineralogical, microscopic, thermal, and spectral characteristics of jarosite and natrojarosite minerals. Systematic mineralogic and chemical examination of a suite of 32 natural stoichiometric jarosite and natrojarosite samples from diverse supergene and hydrothermal environments indicates that there is only limited solid solution between Na and K at low temperatures, which suggests the presence of a solvus in the jarosite-natrojarosite system at temperatures below about 140 °C. The samples examined in this study consist of either end members or coexisting end-member pairs of jarosite and natrojarosite. Quantitative electron-probe microanalysis data for several natural hydrothermal samples show only end-member compositions for individual grains or zones, and no detectable alkali-site deficiencies, which indicates that there is no hydronium substitution within the analytical uncertainty of the method. In addition, there is no evidence of Fe deficiencies in the natural hydrothermal samples. Hydronium-bearing jarosite was detected in only one relatively young supergene sample suggesting that terrestrial hydronium-bearing jarosites generally are unstable over geologic timescales. Unit-cell parameters of the 20 natural stoichiometric jarosites and 12 natural stoichiometric natrojarosites examined in this study have distinct and narrow ranges in the a- and c-cell dimensions. There is no overlap of these parameters at the 1r level for the two end-member compositions. Several hydrothermal samples consist of fine-scale (2–10 lm) intimate intergrowths of jarosite and natrojarosite, which could have resulted from solid-state diffusion segregation or growth zoning due to variations in the Na/K activity ratio of hydrothermal solutions

    Mineralogical and Chemical Characteristics of Some Natural Jarosites

    Get PDF
    This paper presents a detailed study of the mineralogical, microscopic, thermal, and spectral characteristics of jarosite and natrojarosite minerals. Systematic mineralogic and chemical examination of a suite of 32 natural stoichiometric jarosite and natrojarosite samples from diverse supergene and hydrothermal environments indicates that there is only limited solid solution between Na and K at low temperatures, which suggests the presence of a solvus in the jarosite-natrojarosite system at temperatures below about 140 °C. The samples examined in this study consist of either end members or coexisting end-member pairs of jarosite and natrojarosite. Quantitative electron-probe microanalysis data for several natural hydrothermal samples show only end-member compositions for individual grains or zones, and no detectable alkali-site deficiencies, which indicates that there is no hydronium substitution within the analytical uncertainty of the method. In addition, there is no evidence of Fe deficiencies in the natural hydrothermal samples. Hydronium-bearing jarosite was detected in only one relatively young supergene sample suggesting that terrestrial hydronium-bearing jarosites generally are unstable over geologic timescales. Unit-cell parameters of the 20 natural stoichiometric jarosites and 12 natural stoichiometric natrojarosites examined in this study have distinct and narrow ranges in the a- and c-cell dimensions. There is no overlap of these parameters at the 1r level for the two end-member compositions. Several hydrothermal samples consist of fine-scale (2–10 lm) intimate intergrowths of jarosite and natrojarosite, which could have resulted from solid-state diffusion segregation or growth zoning due to variations in the Na/K activity ratio of hydrothermal solutions

    Electron Probe Microanalysis as a Tool for Identifying Vermiculite Sources

    No full text

    THE COMPOSITION OF COEXISTING JAROSITE-GROUP MINERALS AND WATER FROM THE RICHMOND MINE, IRON MOUNTAIN, CALIFORNIA

    Get PDF
    Jarosite-group minerals accumulate in the form of stalactites and fine-grained mud on massive pyrite in the D drift of the Richmond mine, Iron Mountain, California. Water samples were collected by placing beakers under the dripping stalactites and by extracting pore water from the mud using a centrifuge. The water is rich in Fe3+ and SO42–, with a pH of approximately 2.1, which is significantly higher than the extremely acidic waters found elsewhere in the mine. Electron-microprobe analysis and X-ray mapping indicate that the small crystals (\u3c10 μm in diameter) are compositionally zoned with respect to Na and K, and include hydronium jarosite corresponding to the formula (H3O)0.6K0.3Na0.1Fe3+3(SO4)2(OH)6. The proton-microprobe analyses indicate that the jarosite-group minerals contain significant amounts of As, Pb and Zn, and minor levels of Bi, Rb, Sb, Se, Sn and Sr. Speciation modeling indicates that the drip waters are supersaturated with respect to jarosite-group minerals. The expected range in composition of jarosite-group solid-solution in equilibrium with the pore water extracted from the mud was found to be consistent with the observed range in composition

    Trace elements in hydrothermal quartz: relationships to cathodoluminescent textures and insights into vein formation

    No full text
    High-resolution electron microprobe maps show the distribution of Ti, Al, Ca, K, and Fe among quartz growth zones revealed by scanning electron microscope-cathodoluminescence (SEM-CL) from 12 hydrothermal ore deposits formed between ~100 and ~750 °C. The maps clearly show the relationships between trace elements and CL intensity in quartz. Among all samples, no single trace element consistently correlates with variations in CL intensity. However in vein quartz from five porphyry-Cu (Mo-Au) deposits, CL intensity always correlates positively with Ti concentrations, suggesting that Ti is a CL activator in quartz formed at >400 °C. Ti concentrations in most rutile-bearing vein quartz from porphyry copper deposits indicate reasonable formation temperatures of <750 °C using the TitaniQ geothermometer. Titanium concentrations of <10 ppm in all veins that formed at temperatures <350 °C suggest a broad correlation between Ti concentrations and temperature of quartz precipitation. In quartz from most deposits formed at 2000 ppm, but in high-temperature quartz, Al concentrations are consistently in the range of several hundred ppm. Aluminum concentrations in quartz reflect the Al solubility in hydrothermal fluids, which is strongly dependent on pH. Aluminum concentrations in quartz therefore reflect fluctuations in pH that may drive metal-sulfide precipitation in hydrothermal systems

    Improved electron probe microanalysis of trace elements in quartz

    No full text
    Quartz occurs in a wide range of geologic environments throughout the Earth's crust. The concentration and distribution of trace elements in quartz provide information such as temperature and other physical conditions of fomation. Trace element analySes with modern electron-probe microanalysis (EPMA) instruments can achieve 99% confidence detection of - 100 ppm with fairly minimal effort for many elements in samples of low to moderate aVerage atomic number such as mauy common oxides and silicates. HoweVer, trace element measurements below 100 ppm in many materials are limited, not ouly by the precision of the background measurement, but also by the accuracy with which background levels are determined. A new "blank" correction algorithm has been developed and tested on both Cameca and JEOL instruments, which applies a quantitative correction to the emitted X-ray intensities duriug the iteration of the sample matrix correction based on a zero level (or known trace) abundance calibration standard. This iterated blank correction, when combined with improved background fit models, and an "aggregate'' intensity calculation utilizing multiple spectrometer intensities in software for greater geometric efficiency, yields a detection limit of 2 to 3 ppm for Ti and 6 to 7 ppm for AI in quartz at 99% t-test confidence with similar levels for absolute accuracy

    The Lepanto Cu-Au deposit, Philippines: A fossil hyperacidic volcanic lake complex

    No full text
    Hyperacidic lakes and associated solfatara in active volcanoes are the expression of magmatic gas expansion from source to surface. Here we show for the first time, that the vein system that comprises the~2Ma high-sulfidation, Lepanto copper-gold deposi
    corecore