43 research outputs found

    Capillary Electrophoresis Analysis of Organic Amines and Amino Acids in Saline and Acidic Samples Using the Mars Organic Analyzer

    Get PDF
    The Mars Organic Analyzer (MOA) has enabled the sensitive detection of amino acid and amine biomarkers in laboratory standards and in a variety of field sample tests. However, the MOA is challenged when samples are extremely acidic and saline or contain polyvalent cations. Here, we have optimized the MOA analysis, sample labeling, and sample dilution buffers to handle such challenging samples more robustly. Higher ionic strength buffer systems with pKa values near pH 9 were developed to provide better buffering capacity and salt tolerance. The addition of ethylaminediaminetetraacetic acid (EDTA) ameliorates the negative effects of multivalent cations. The optimized protocol utilizes a 75mM borate buffer (pH 9.5) for Pacific Blue labeling of amines and amino acids. After labeling, 50mM (final concentration) EDTA is added to samples containing divalent cations to ameliorate their effects. This optimized protocol was used to successfully analyze amino acids in a saturated brine sample from Saline Valley, California, and a subcritical water extract of a highly acidic sample from the Río Tinto, Spain. This work expands the analytical capabilities of the MOA and increases its sensitivity and robustness for samples from extraterrestrial environments that may exhibit pH and salt extremes as well as metal ions

    Hydrothermal inputs drive dynamic shifts in microbial communities in Lake Magadi, Kenya Rift Valley

    Get PDF
    The Methane Index (MI) is an organic geochemical index that uses isoprenoid glycerol dialkyl glycerol tetraethers (GDGTs) as a proxy for methane cycling. Here, we report results from core spanning > 700 ka in Lake Magadi, Kenya, which shows abrupt shifts between high and low MI values in the core. These shifts coincide with interbedded tuffaceous silt. Where tuffaceous silts are present, MI “switches off” (MI < 0.2); in contrast, where these silts are absent in the core, the MI increases (MI > 0.5). Bulk organic matter is enriched in 13C in Magadi during “MI-off” periods, with values of ~ −18 ‰ in the upper part of the core and −22 to −25 ‰ in the lower portion. Evidence from n-alkanes and fatty acid methyl esters (FAMEs) support previous interpretations of an arid environment with a shallower lake where Thermoproteotal (formerly Crenarchaeota) archaea thrive in a hot spring rich environment over Euryarchaeota. Sediments deposited when the MI switches “on” showed δ13COM values as low as −89.4 ‰, but most were within the range of −28 to −30 ‰, which is consistent with contributions from methanogens rather than methanotrophs. Thus, the likely source of these high MI values in Lake Magadi is methanogenic archaea. Our results show that hydrothermal inputs of bicarbonate-rich waters into Lake Magadi cause a shift in the dominant archaeal communities, alternating between two stable states

    Ancient Microbes from Halite Fluid Inclusions: Optimized Surface Sterilization and DNA Extraction

    Get PDF
    Fluid inclusions in evaporite minerals (halite, gypsum, etc.) potentially preserve genetic records of microbial diversity and changing environmental conditions of Earth's hydrosphere for nearly one billion years. Here we describe a robust protocol for surface sterilization and retrieval of DNA from fluid inclusions in halite that, unlike previously published methods, guarantees removal of potentially contaminating surface-bound DNA. The protocol involves microscopic visualization of cell structures, deliberate surface contamination followed by surface sterilization with acid and bleach washes, and DNA extraction using Amicon centrifugal filters. Methods were verified on halite crystals of four different ages from Saline Valley, California (modern, 36 ka, 64 ka, and 150 ka), with retrieval of algal and archaeal DNA, and characterization of the algal community using ITS1 sequences. The protocol we developed opens up new avenues for study of ancient microbial ecosystems in fluid inclusions, understanding microbial evolution across geological time, and investigating the antiquity of life on earth and other parts of the solar system

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Anomalously High Cretaceous Paleobrine Temperatures: Hothouse, Hydrothermal or Solar Heating?

    No full text
    Elevated surface paleobrine temperatures (average 85.6 °C) are reported here from Cretaceous marine halites in the Maha Sarakham Formation, Khorat Plateau, Thailand. Fluid inclusions in primary subaqueous “chevron” and “cumulate” halites associated with potash salts contain daughter crystals of sylvite (KCl) and carnallite (MgCl2·KCl·6H2O). Petrographic textures demonstrate that these fluid inclusions were trapped from the warm brines in which the halite crystallized. Later cooling produced supersaturated conditions leading to the precipitation of sylvite and carnallite daughter crystals within fluid inclusions. Dissolution temperatures of daughter crystals in fluid inclusions from the same halite bed vary over a large range (57.9 °C to 117.2 °C), suggesting that halite grew at different temperatures within and at the bottom of the water column. Consistency of daughter crystal dissolution temperatures within fluid inclusion bands and the absence of vapor bubbles at room temperature demonstrate that fluid inclusions have not stretched or leaked. Daughter crystal dissolution temperatures are reproducible to within 0.1 °C to 10.2 °C (average of 1.8 °C), and thus faithfully document paleobrine conditions. Microcrystalline hematite incorporated within halite crystals also indicate high paleobrine temperatures. We conclude that halite crystallized from warm brines rich in K-Mg-Na-Cl; sylvite and carnallite daughter crystals were nucleated during cooling of the warm brines sometime after deposition. Hothouse, hydrothermal, and solar-heating hypotheses are compared to explain the anomalously high surface paleobrine temperatures. Solar radiation stored in shallow density stratified brines is the most plausible explanation for the observed paleobrine temperatures and the progressively higher temperatures downward through the paleobrine column. The solar-heating hypothesis may also explain high paleobrine temperatures documented from fluid inclusions in other ancient halites

    The use of Mg/Ca as a seawater temerature proxy

    No full text
    The underlying basis for Mg/Ca paleothermometry is that the amount of magnesium in calcite precipitated from seawater is dependent on temperature. Here we review the state of the art of the Mg/Ca seawater paleotemperature proxy, summarized by the following: 1) Calcite, whether formed abiotically or biologically as foraminifera and ostracode shells, incörporates variable amounts of magnesium into the crystal structure. 2) Uptake of Mg varies positively with temperature. 3) The relationship between temperature and the amount of Mg in calcite has been quantified by experiments on synthetic calcite growth and by culture, core top, and sediment trap experiments using living organisms. 4) The most careful calibrations of the Mg/Ca paleothermometer have been done for planktic foraminifera, then benthic foraminifera; there are species-specific variations in the amount of Mg incorporated into foraminifera shells. 5) The Mg/Ca ratio of calcite from planktic foraminifera in deep-sea cores has been widely used to interpret sea surface temperatures. 6) Measurement of both Mg/Ca and δ18O in planktic foraminifera have been used to calculate δ18O in seawater, and after correction for global ice volume, salinity could be inferred. 7) Mg/Ca from benthic foraminifera have been used to reconstruct deep-sea temperatures and cooling of ~12°C over the last 50 million years. 8) One problem with the Mg/Ca seawater temperature proxy is partial dissolution of. foraminifer shells, which lowers the Mg/Ca, and leads to an underestimation of ocean temperature. Benthic foraminifers appear to be more resistant to partial dissolution. 9) Past changes in the Mg/Ca ratio of seawater are an important factor in determining the amount of Mg in fossil skeletal calcite, and thus add another variable to the Mg/Ca temperature proxy. All Mg/Ca paleotemperature studies on fossil calcite older than Pleistocene should take into account the Mg/Ca of the seawater from which it precipitated
    corecore