12,313 research outputs found

    The Riemann Surface of a Static Dispersion Model and Regge Trajectories

    Full text link
    The S-matrix in the static limit of a dispersion relation is a matrix of a finite order N of meromorphic functions of energy ω\omega in the plane with cuts (,1],[+1,+)(-\infty,-1],[+1,+\infty). In the elastic case it reduces to N functions Si(ω)S_{i}(\omega) connected by the crossing symmetry matrix A. The scattering of a neutral pseodoscalar meson with an arbitrary angular momentum l at a source with spin 1/2 is considered (N=2). The Regge trajectories of this model are explicitly found.Comment: 5 pages, LaTe

    Corrections to deuterium hyperfine structure due to deuteron excitations

    Full text link
    We consider the corrections to deuterium hyperfine structure originating from the two-photon exchange between electron and deuteron, with the deuteron excitations in the intermediate states. In particular, the motion of the two intermediate nucleons as a whole is taken into account. The problem is solved in the zero-range approximation. The result is in good agreement with the experimental value of the deuterium hyperfine splitting.Comment: 7 pages, LaTe

    World-line Quantisation of a Reciprocally Invariant System

    Get PDF
    We present the world-line quantisation of a system invariant under the symmetries of reciprocal relativity (pseudo-unitary transformations on ``phase space coordinates" (xμ(τ),pμ(τ))(x^\mu(\tau),p^\mu(\tau)) which preserve the Minkowski metric and the symplectic form, and global shifts in these coordinates, together with coordinate dependent transformations of an additional compact phase coordinate, θ(τ)\theta(\tau)). The action is that of free motion over the corresponding Weyl-Heisenberg group. Imposition of the first class constraint, the generator of local time reparametrisations, on physical states enforces identification of the world-line cosmological constant with a fixed value of the quadratic Casimir of the quaplectic symmetry group Q(D1,1)U(D1,1)H(D)Q(D-1,1)\cong U(D-1,1)\ltimes H(D), the semi-direct product of the pseudo-unitary group with the Weyl-Heisenberg group (the central extension of the global translation group, with central extension associated to the phase variable θ(τ)\theta(\tau)). The spacetime spectrum of physical states is identified. Even though for an appropriate range of values the restriction enforced by the cosmological constant projects out negative norm states from the physical spectrum, leaving over spin zero states only, the mass-squared spectrum is continuous over the entire real line and thus includes a tachyonic branch as well

    What if the Higgs couplings to W and Z bosons are larger than in the Standard Model?

    Get PDF
    We derive a general sum rule relating the Higgs coupling to W and Z bosons to the total cross section of longitudinal gauge boson scattering in I=0,1,2 isospin channels. The Higgs coupling larger than in the Standard Model implies enhancement of the I=2 cross section. Such an enhancement could arise if the Higgs sector is extended by an isospin-2 scalar multiplet including a doubly charged, singly charged, and another neutral Higgs.Comment: 11 pages, no figures. v2: comments and references added. v3: early QCD references adde

    Effect of forward motion on engine noise

    Get PDF
    Methods used to determine a procedure for correcting static engine data for the effects of forward motion are described. Data were analyzed from airplane flyover and static-engine tests with a JT8D-109 low-bypass-ratio turbofan engine installed on a DC-9-30, with a CF6-6D high-bypass-ratio turbofan engine installed on a DC-10-10, and with a JT9D-59A high-bypass-ratio turbofan engine installed on a DC-10-40. The observed differences between the static and the flyover data bases are discussed in terms of noise generation, convective amplification, atmospheric propagation, and engine installation. The results indicate that each noise source must be adjusted separately for forward-motion and installation effects and then projected to flight conditions as a function of source-path angle, directivity angle, and acoustic range relative to the microphones on the ground

    Ballistic-Ohmic quantum Hall plateau transition in graphene pn junction

    Get PDF
    Recent quantum Hall experiments conducted on disordered graphene pn junction provide evidence that the junction resistance could be described by a simple Ohmic sum of the n and p mediums' resistances. However in the ballistic limit, theory predicts the existence of chirality-dependent quantum Hall plateaus in a pn junction. We show that two distinctively separate processes are required for this ballistic-Ohmic plateau transition, namely (i) hole/electron Landau states equilibration and (ii) valley iso-spin dilution of the incident Landau edge state. These conclusions are obtained by a simple scattering theory argument, and confirmed numerically by performing ensembles of quantum magneto-transport calculations on a 0.1um-wide disordered graphene pn junction within the tight-binding model. The former process is achieved by pn interface roughness, where a pn interface disorder with a root-mean-square roughness of 10nm was found to suffice under typical experimental conditions. The latter process is mediated by extrinsic edge roughness for an armchair edge ribbon and by intrinsic localized intervalley scattering centers at the edge of the pn interface for a zigzag ribbon. In light of these results, we also examine why higher Ohmic type plateaus are less likely to be observable in experiments.Comment: 9 pages, 6 figure

    Representations of the Canonical group, (the semi-direct product of the Unitary and Weyl-Heisenberg groups), acting as a dynamical group on noncommuting extended phase space

    Full text link
    The unitary irreducible representations of the covering group of the Poincare group P define the framework for much of particle physics on the physical Minkowski space P/L, where L is the Lorentz group. While extraordinarily successful, it does not provide a large enough group of symmetries to encompass observed particles with a SU(3) classification. Born proposed the reciprocity principle that states physics must be invariant under the reciprocity transform that is heuristically {t,e,q,p}->{t,e,p,-q} where {t,e,q,p} are the time, energy, position, and momentum degrees of freedom. This implies that there is reciprocally conjugate relativity principle such that the rates of change of momentum must be bounded by b, where b is a universal constant. The appropriate group of dynamical symmetries that embodies this is the Canonical group C(1,3) = U(1,3) *s H(1,3) and in this theory the non-commuting space Q= C(1,3)/ SU(1,3) is the physical quantum space endowed with a metric that is the second Casimir invariant of the Canonical group, T^2 + E^2 - Q^2/c^2-P^2/b^2 +(2h I/bc)(Y/bc -2) where {T,E,Q,P,I,Y} are the generators of the algebra of Os(1,3). The idea is to study the representations of the Canonical dynamical group using Mackey's theory to determine whether the representations can encompass the spectrum of particle states. The unitary irreducible representations of the Canonical group contain a direct product term that is a representation of U(1,3) that Kalman has studied as a dynamical group for hadrons. The U(1,3) representations contain discrete series that may be decomposed into infinite ladders where the rungs are representations of U(3) (finite dimensional) or C(2) (with degenerate U(1)* SU(2) finite dimensional representations) corresponding to the rest or null frames.Comment: 25 pages; V2.3, PDF (Mathematica 4.1 source removed due to technical problems); Submitted to J.Phys.
    corecore