2 research outputs found

    Konvensyen Myprospec tumpu revolusi industri 4.0

    Get PDF
    Rising atmospheric concentrations of CO 2 (C a) can reduce stomatal conductance and transpiration rate in trees, but the magnitude of this effect varies considerably among experiments. The theory of optimal stomatal behaviour predicts that the ratio of photosynthesis to transpiration (instantaneous transpiration efficiency, ITE) should increase in proportion to C a. We hypothesized that plants regulate stomatal conductance optimally in response to rising C a. We tested this hypothesis with data from young Eucalyptus saligna Sm. trees grown in 12 climate-controlled whole-tree chambers for 2 years at ambient and elevated C a. Elevated C a was ambient + 240 ppm, 60% higher than ambient C a. Leaf-scale gas exchange was measured throughout the second year of the study and leaf-scale ITE increased by 60% under elevated C a, as predicted. Values of leaf-scale ITE depended strongly on vapour pressure deficit (D) in both CO 2 treatments. Whole-canopy CO 2 and H 2O fluxes were also monitored continuously for each chamber throughout the second year. There were small differences in D between C a treatments, which had important effects on values of canopy-scale ITE. However, when C a treatments were compared at the same D, canopy-scale ITE was consistently increased by 60%, again as predicted. Importantly, leaf and canopy-scale ITE were not significantly different, indicating that ITE was not scale-dependent. Observed changes in transpiration rate could be explained on the basis that ITE increased in proportion to C a. The effect of elevated C a on photosynthesis increased with rising D. At high D, C a had a large effect on photosynthesis and a small effect on transpiration rate. At low D, in contrast, there was a small effect of C a on photosynthesis, but a much larger effect on transpiration rate. If shown to be a general response, the proportionality of ITE with C a will allow us to predict the effects of C a on transpiration rate

    Light inhibition of leaf respiration in field-grown Eucalyptus saligna in whole-tree chambers under elevated atmospheric CO2 and summer drought

    No full text
    We investigated whether the degree of light inhibition of leaf respiration (R) differs among large Eucalyptus saligna grown in whole-tree chambers and exposed to present and future atmospheric [CO2] and summer drought. Associated with month-to-month changes in temperature were concomitant changes in R in the light (Rlight) and darkness (Rdark), with both processes being more temperature dependent in well-watered trees than under drought. Overall rates of Rlight and Rdark were not significantly affected by [CO2]. By contrast, overall rates of Rdark (averaged across both [CO2]) were ca. 25% lower under drought than in well-watered trees. During summer, the degree of light inhibition of leaf R was greater in droughted (ca. 80% inhibition) than well-watered trees (ca. 50% inhibition). Notwithstanding these treatment differences, an overall positive relationship was observed between Rlight and Rdark when data from all months/treatments were combined (R2=0.8). Variations in Rlight were also positively correlated with rates of Rubisco activity and nitrogen concentration. Light inhibition resulted in a marked decrease in the proportion of light-saturated photosynthesis respired (i.e. reduced R/Asat). Collectively, these results highlight the need to account for light inhibition when assessing impacts of global change drivers on the carbon economy of tree canopies
    corecore