119 research outputs found

    XMM-Newton and Chandra Cross Calibration Using HIFLUGCS Galaxy Clusters: Systematic Temperature Differences and Cosmological Impact

    Full text link
    Cosmological constraints from clusters rely on accurate gravitational mass estimates, which strongly depend on cluster gas temperature measurements. Therefore, systematic calibration differences may result in biased, instrument-dependent cosmological constraints. This is of special interest in the light of the tension between the Planck results of the primary temperature anisotropies of the CMB and Sunyaev-Zel'dovich plus X-ray cluster counts analyses. We quantify in detail the systematics and uncertainties of the cross-calibration of the effective area between five X-ray instruments, EPIC-MOS1/MOS2/PN onboard XMM-Newton and ACIS-I/S onboard Chandra, and the influence on temperature measurements. Furthermore, we assess the impact of the cross calibration uncertainties on cosmology. Using the HIFLUGCS sample, consisting of the 64 X-ray brightest galaxy clusters, we constrain the ICM temperatures through spectral fitting in the same, mostly isothermal, regions and compare them. Our work is an extension to a previous one using X-ray clusters by the IACHEC. Performing spectral fitting in the full energy band we find that best-fit temperatures determined with XMM-Newton/EPIC are significantly lower than Chandra/ACIS temperatures. We demonstrate that effects like multitemperature structure and different relative sensitivities of the instruments at certain energy bands cannot explain the observed differences. We conclude that using XMM-Newton/EPIC, instead of Chandra/ACIS to derive full energy band temperature profiles for cluster mass determination results in an 8% shift towards lower OmegaM values and <1% shift towards higher sigma8 values in a cosmological analysis of a complete sample of galaxy clusters. Such a shift is insufficient to significantly alleviate the tension between Planck CMB anisotropies and SZ plus XMM-Newton cosmological constraints.Comment: Accepted by A&A; Python-Script for modification of XMM-Newton/EPIC and Chandra/ACIS effective areas according to the stacked residual ratios: https://wikis.mit.edu/confluence/display/iachec/Data

    Scaling relations for galaxy clusters: properties and evolution

    Full text link
    Well-calibrated scaling relations between the observable properties and the total masses of clusters of galaxies are important for understanding the physical processes that give rise to these relations. They are also a critical ingredient for studies that aim to constrain cosmological parameters using galaxy clusters. For this reason much effort has been spent during the last decade to better understand and interpret relations of the properties of the intra-cluster medium. Improved X-ray data have expanded the mass range down to galaxy groups, whereas SZ surveys have openened a new observational window on the intracluster medium. In addition,continued progress in the performance of cosmological simulations has allowed a better understanding of the physical processes and selection effects affecting the observed scaling relations. Here we review the recent literature on various scaling relations, focussing on the latest observational measurements and the progress in our understanding of the deviations from self similarity.Comment: 38 pages. Review paper. Accepted for publication in Space Science Reviews (eds: S. Ettori, M. Meneghetti). This is a product of the work done by an international team at the International Space Science Institute (ISSI) in Bern on "Astrophysics and Cosmology with Galaxy Clusters: the X-ray and Lensing View

    XMM Observations of Metal Abundances in Galaxy Clusters

    Get PDF
    The hot gas that fills the space between galaxies in clusters is rich in metals. Due to their large potential well, galaxy clusters accumulate metals over the whole history of the cluster, and retain important information on cluster formation and evolution.We derive detailed metallicity maps for a sample of 5 clusters, observed with XMM-Newton, to study the distribution of metals in the Intra-Cluster Medium (ICM). We show that even in relaxed clusters the distribution of metals shows many inhomogeneities with several maxima separated by low metallicity regions. We also found a deviation from the expected temperature-metallicity relation

    From "universal" profiles to "universal" scaling laws in X-ray galaxy clusters

    Get PDF
    As the end products of the hierarchical process of cosmic structure formation, galaxy clusters present some predictable properties, like those mostly driven by gravity, and some others, more affected by astrophysical dissipative processes, that can be recovered from observations and that show remarkable "universal" behaviour once rescaled by halo mass and redshift. However, a consistent picture that links these universal radial profiles and the integrated values of the thermodynamical quantities of the intracluster medium, also quantifying the deviations from the standard self-similar gravity-driven scenario, has to be demonstrated. In this work, we use a semi-analytic model based on a universal pressure profile in hydrostatic equilibrium within a cold dark matter halo with a defined relation between mass and concentration to reconstruct the scaling laws between the X-ray properties of galaxy clusters. We also quantify any deviation from the self-similar predictions in terms of temperature dependence of a few physical quantities such as the gas mass fraction, the relation between spectroscopic temperature and its global value, and, if present, the hydrostatic mass bias. This model allows to reconstruct both the observed profiles and the scaling laws between integrated quantities. We use the Planck-selected ESZ sample to calibrate the predicted scaling laws between gas mass, temperature, luminosity and total mass. Our universal model reproduces well the observed thermodynamic properties and provides a way to interpret the observed deviations from the standard self-similar behaviour. By combining these results with the constraints on the observed YSZTY_{SZ}-T relation, we show how we can quantify the level of gas clumping affecting the studied sample, estimate the clumping-free gas mass fraction, and suggest the average level of hydrostatic bias present.Comment: 13 pages. A&A in press. Minor update to fix typos and better match published versio

    Projection effects in galaxy cluster samples: insights from X-ray redshifts

    Full text link
    Up to now, the largest sample of galaxy clusters selected in X-rays comes from the ROSAT All-Sky Survey (RASS). Although there have been many interesting clusters discovered with the RASS data, the broad point spread function (PSF) of the ROSAT satellite limits the amount of spatial information of the detected objects. This leads to the discovery of new cluster features when a re-observation is performed with higher resolution X-ray satellites. Here we present the results from XMM-Newton observations of three clusters: RXCJ2306.6-1319, ZwCl1665 and RXCJ0034.6-0208, for which the observations reveal a double or triple system of extended components. These clusters belong to the extremely expanded HIghest X-ray FLUx Galaxy Cluster Sample (eeHIFLUGCS), which is a flux-limited cluster sample (fX,5005×1012f_\textrm{X,500}\geq 5\times10^{-12} erg s1^{-1} cm2^{-2} in the 0.12.40.1-2.4 keV energy band). For each structure in each cluster, we determine the redshift with the X-ray spectrum and find that the components are not part of the same cluster. This is confirmed by an optical spectroscopic analysis of the galaxy members. Therefore, the total number of clusters is actually 7 and not 3. We derive global cluster properties of each extended component. We compare the measured properties to lower-redshift group samples, and find a good agreement. Our flux measurements reveal that only one component of the ZwCl1665 cluster has a flux above the eeHIFLUGCS limit, while the other clusters will no longer be part of the sample. These examples demonstrate that cluster-cluster projections can bias X-ray cluster catalogues and that with high-resolution X-ray follow-up this bias can be corrected

    Extending the LXTL_{\mathrm{X}}-T relation from clusters to groups-Impact of cool core nature, AGN feedback, and selection effects

    Full text link
    We aim to investigate the bolometric LXTL_{\mathrm{X}}-T relation for galaxy groups, and study the impact of gas cooling, feedback from supermassive black holes, and selection effects on it. With a sample of 26 galaxy groups we obtained the best fit LXTL_{\mathrm{X}}-T relation for five different cases depending on the ICM core properties and central AGN radio emission, and determined the slopes, normalisations, intrinsic and statistical scatters for both temperature and luminosity. Simulations were undertaken to correct for selection effects (e.g. Malmquist bias) and the bias corrected relations for groups and clusters were compared. The slope of the bias corrected LXTL_{\mathrm{X}}-T relation is marginally steeper but consistent with clusters (3\sim 3). Groups with a central cooling time less than 1 Gyr (SCC groups) show indications of having the steepest slope and the highest normalisation. For the groups, the bias corrected intrinsic scatter in LXL_{\mathrm{X}} is larger than the observed scatter for most cases, which is reported here for the first time. Lastly, we see indications that the groups with an extended central radio source have a much steeper slope than those groups which have a CRS with only core emission. Additionally, we also see indications that the more powerful radio AGN are preferentially located in NSCC groups rather than SCC groups.Comment: Accepted for publication in Astronomy and Astrophysic

    Stormy weather in 3C 196.1: nuclear outbursts and merger events shape the environment of the hybrid radio galaxy 3C 196.1

    Full text link
    We present a multi-wavelength analysis based on archival radio, optical and X-ray data of the complex radio source 3C 196.1, whose host is the brightest cluster galaxy of a z=0.198z=0.198 cluster. HST data show Hα\alpha+[N II] emission aligned with the jet 8.4 GHz radio emission. An Hα\alpha+[N II] filament coincides with the brightest X-ray emission, the northern hotspot. Analysis of the X-ray and radio images reveals cavities located at galactic- and cluster- scales. The galactic-scale cavity is almost devoid of 8.4 GHz radio emission and the south-western Hα\alpha+[N II] emission is bounded (in projection) by this cavity. The outer cavity is co-spatial with the peak of 147 MHz radio emission, and hence we interpret this depression in X-ray surface brightness as being caused by a buoyantly rising bubble originating from an AGN outburst \sim280 Myrs ago. A \textit{Chandra} snapshot observation allowed us to constrain the physical parameters of the cluster, which has a cool core with a low central temperature \sim2.8 keV, low central entropy index \sim13 keV cm2^2 and a short cooling time of \sim500 Myr, which is <0.05<0.05 of the age of the Universe at this redshift. By fitting jumps in the X-ray density we found Mach numbers between 1.4 and 1.6, consistent with a shock origin. We also found compelling evidence of a past merger, indicated by a morphology reminiscent of gas sloshing in the X-ray residual image. Finally, we computed the pressures, enthalpies EcavE_{cav} and jet powers PjetP_{jet} associated with the cavities: Ecav7×1058E_{cav}\sim7\times10^{58} erg, Pjet1.9×1044P_{jet}\sim1.9\times10^{44} erg s1^{-1} for the inner cavity and Ecav3×1060E_{cav}\sim3\times10^{60} erg, Pjet3.4×1044P_{jet}\sim3.4\times10^{44} erg s1^{-1} for the outer cavity.Comment: 14 pages, 4 figures, ApJ accepte

    The radio relic in Abell 2256: overall spectrum and implications for electron acceleration

    Full text link
    The galaxy cluster Abell 2256 hosts one of the most intriguing examples in the class of radio relics. It has been found that this radio relic has a rather flat integrated spectrum at low frequencies that would imply an injection spectral index for the electrons that is inconsistent with the flattest allowed by the test particle diffusive shock acceleration (DSA). We performed new high-frequency observations at 2273, 2640, and 4850 MHz. Combining these new observations with images available in the literature, we constrain the radio integrated spectrum of the radio relic in Abell 2256 over the widest sampled frequency range collected so far for this class of objects (63 -10450 MHz). Moreover, we used X-ray observations of the cluster to check the temperature structure in the regions around the radio relic. We find that the relic keeps an unusually flat behavior up to high frequencies. Although the relic integrated spectrum between 63 and 10450 MHz is not inconsistent with a single power law with α6310450=0.92±0.02\alpha_{63}^{10450}= 0.92\pm 0.02, we find hints of a steepening at frequencies > 1400 MHz. The two frequency ranges 63-1369 MHz and 1369-10450 MHz are, indeed, best represented by two different power laws, with α631369=0.85±0.01\alpha_{63}^{1369}= 0.85\pm 0.01 and α136910450=1.00±0.02\alpha_{1369}^{10450}= 1.00\pm 0.02. This broken power law would require special conditions to be explained in terms of test-particle DSA, e.g., non-stationarity of the spectrum and/or non-stationarity of the shock. On the other hand, the single power law would make of this relic the one with the flattest integrated spectrum known so far, even flatter than what allowed in the test-particle approach to DSA. We find a rather low temperature ratio of T2/T11.7T_2/T_1 \sim 1.7 across the G region of the radio relic and no temperature jump across the H region.Comment: 18 pages, 11 figures, 9 tables. Accepted for publication in Astronomy & Astrophysic
    corecore