1,159 research outputs found

    A new list of thorium and argon spectral lines in the visible

    Get PDF
    Aims. We present a new list of thorium and argon emission lines in the visible obtained by analyzing high-resolution (R=110,000) spectra of a ThAr hollow cathode lamp. The aim of this new line list is to allow significant improvements in the quality of wavelength calibration for medium- to high-resolution astronomical spectrographs. Methods. We use a series of ThAr lamp exposures obtained with the HARPS instrument (High Accuracy Radial-velocity Planet Searcher) to detect previously unknown lines, perform a systematic search for blended lines and correct individual wavelengths by determining the systematic offset of each line relative to the average wavelength solution. Results. We give updated wavelengths for more than 8400 lines over the spectral range 3785-6915 A. The typical internal uncertainty on the line positions is estimated to be ~10 m/s (3.3 parts in 10^8 or 0.18 mA), which is a factor of 2-10 better than the widely used Los Alamos Atlas of the Thorium Spectrum (Palmer & Engleman 1983). The absolute accuracy of the global wavelength scale is the same as in the Los Alamos Atlas. Using this new line list on HARPS ThAr spectra, we are able to obtain a global wavelength calibration which is precise at the 20 cm/s level (6.7 parts in 10^10 or 0.0037 mA). Conclusions. Several research fields in astronomy requiring high-precision wavelength calibration in the visible (e.g. radial velocity planet searches, variability of fundamental constants) should benefit from using the new line list.Comment: 7 pages, 6 figures, accepted for publication in A&

    Evaluating the stability of atmospheric lines with HARPS

    Full text link
    Context: In the search for extrasolar systems by radial velocity technique, a precise wavelength calibration is necessary for high-precision measurements. The choice of the calibrator is a particularly important question in the infra-red domain, where the precision and exploits still fall behind the achievements of the optical. Aims: We investigate the long-term stability of atmospheric lines as a precise wavelength reference and analyze their sensitivity to different atmospheric and observing conditions. Methods: We use HARPS archive data on three bright stars, Tau Ceti, Mu Arae and Epsilon Eri, spanning 6 years and containing high-cadence measurements over several nights. We cross-correlate this data with an O2 mask and evaluate both radial velocity and bisector variations down to a photon noise of 1 m/s. Results: We find that the telluric lines in the three data-sets are stable down to 10 m/s (r.m.s.) over the 6 years. We also show that the radial velocity variations can be accounted for by simple atmospheric models, yielding a final precision of 1-2 m/s. Conclusions: The long-term stability of atmospheric lines was measured as being of 10 m/s over six years, in spite of atmospheric phenomena. Atmospheric lines can be used as a wavelength reference for short-time-scales programs, yielding a precision of 5 m/s "out-of-the box". A higher precision, down to 2 m/s can be reached if the atmospheric phenomena are corrected for by the simple atmospheric model described, making it a very competitive method even on long time-scales.Comment: 7 pages, accepted for publication in A&

    Refined architecture of the WASP-8 system: a cautionary tale for traditional Rossiter-McLaughlin analysis

    Full text link
    Probing the trajectory of a transiting planet across the disk of its star through the analysis of its Rossiter-McLaughlin effect can be used to measure the differential rotation of the host star and the true obliquity of the system. Highly misaligned systems could be particularly conducive to these mesurements, which is why we reanalysed the HARPS transit spectra of WASP-8b using the 'Rossiter-McLaughlin effect reloaded' (reloaded RM) technique. This approach allows us to isolate the local stellar CCF emitted by the planet-occulted regions. As a result we identified a ∌\sim35% variation in the local CCF contrast along the transit chord, which might trace a deepening of the stellar lines from the equator to the poles. Whatever its origin, such an effect cannot be detected when analyzing the RV centroids of the disk-integrated CCFs through a traditional velocimetric analysis of the RM effect. Consequently it injected a significant bias into the results obtained by Queloz et al. (2010) for the projected rotational velocity veqsin⁥i⋆v_{eq} \sin i_{\star} (1.59−0.09+0.08\stackrel{+0.08}{_{-0.09}} km/s) and the sky-projected obliquity λ\lambda (-123.0−4.4+3.4∘\stackrel{+3.4}{_{-4.4}}^{\circ}). Using our technique, we measured these values to be veqsin⁥i⋆v_{eq} \sin i_{\star} = 1.90±\pm0.05 km/s and λ\lambda = -143.0−1.5+1.6∘\stackrel{+1.6}{_{-1.5}}^{\circ}. We found no compelling evidence for differential rotation of the star, although there are hints that WASP-8 is pointing away from us with the stellar poles rotating about 25% slower than the equator. Measurements at higher accuracy during ingress/egress will be required to confirm this result. In contrast to the traditional analysis of the RM effect, the reloaded RM technique directly extracts the local stellar CCFs, allowing us to analyze their shape and to measure their RV centroids, unbiased by variations in their contrast or FWHM.Comment: Accepted for publication in A&A. 12 page

    Impact of stellar companions on precise radial velocities

    Full text link
    Context: With the announced arrival of instruments such as ESPRESSO one can expect that several systematic noise sources on the measurement of precise radial velocity will become the limiting factor instead of photon noise. A stellar companion within the fiber is such a possible noise source. Aims: With this work we aim at characterizing the impact of a stellar companion within the fiber to radial velocity measurements made by fiber-fed spectrographs. We consider the contaminant star either to be part of a binary system whose primary star is the target star, or as a background/foreground star. Methods: To carry out our study, we used HARPS spectra, co-added the target with contaminant spectra, and then compared the resulting radial velocity with that obtained from the original target spectrum. We repeated this procedure and used different tunable knobs to reproduce the previously mentioned scenarios. Results: We find that the impact on the radial velocity calculation is a function of the difference between individual radial velocities, of the difference between target and contaminant magnitude, and also of their spectral types. For the worst-case scenario in which both target and contaminant star are well centered on the fiber, the maximum contamination for a G or K star may be higher than 10 cm/s, on average, if the difference between target and contaminant magnitude is Δm\Delta m < 10, and higher than 1 m/s if Δm\Delta m < 8. If the target star is of spectral type M, Δm\Delta m < 8 produces the same contamination of 10 cm/s, and a contamination may be higher than 1 m/sComment: Accepted for publication in A&A on 29/12/2019 - 14 page

    The Kahler Structure of Supersymmetric Holographic RG Flows

    Full text link
    We study the metrics on the families of moduli spaces arising from probing with a brane the ten and eleven dimensional supergravity solutions corresponding to renormalisation group flows of supersymmetric large n gauge theory. In comparing the geometry to the physics of the dual gauge theory, it is important to identify appropriate coordinates, and starting with the case of SU(n) gauge theories flowing from N=4 to N=1 via a mass term, we demonstrate that the metric is Kahler, and solve for the Kahler potential everywhere along the flow. We show that the asymptotic form of the Kahler potential, and hence the peculiar conical form of the metric, follows from special properties of the gauge theory. Furthermore, we find the analogous Kahler structure for the N=4 preserving Coulomb branch flows, and for an N=2 flow. In addition, we establish similar properties for two eleven dimensional flow geometries recently presented in the literature, one of which has a deformation of the conifold as its moduli space. In all of these cases, we notice that the Kahler potential appears to satisfy a simple universal differential equation. We prove that this equation arises for all purely Coulomb branch flows dual to both ten and eleven dimensional geometries, and conjecture that the equation holds much more generally.Comment: 26 pages. Late

    Line-profile variations in radial-velocity measurements: Two alternative indicators for planetary searches

    Full text link
    Aims. We introduce two methods to identify false-positive planetary signals in the context of radial-velocity exoplanet searches. The first is the bi-Gaussian cross-correlation function fitting, and the second is the measurement of asymmetry in radial-velocity spectral line information content, Vasy. Methods. We make a systematic analysis of the most used common line profile diagnosis, Bisector Inverse Slope and Velocity Span, along with the two proposed ones. We evaluate all these diagnosis methods following a set of well-defined common criteria and using both simulated and real data. We apply them to simulated cross-correlation functions created with the program SOAP and which are affected by the presence of stellar spots, and to real cross-correlation functions, calculated from HARPS spectra, for stars with a signal originating both in activity and created by a planet. Results. We demonstrate that the bi-Gaussian method allows a more precise characterization of the deformation of line profiles than the standard bisector inverse slope. The calculation of the deformation indicator is simpler and its interpretation more straightforward. More importantly, its amplitude can be up to 30% larger than that of the bisector span, allowing the detection of smaller-amplitude correlations with radial-velocity variations. However, a particular parametrization of the bisector inverse slope is shown to be more efficient on high-signal-to-noise data than both the standard bisector and the bi-Gaussian. The results of the Vasy method show that this indicator is more effective than any of the previous ones, being correlated with the radial-velocity with more significance for signals resulting from a line deformation. Moreover, it provides a qualitative advantage over the bisector, showing significant correlations with RV for active stars for which bisector analysis is inconclusive. (abridged)Comment: 12 pages, 7 figures, accepted for publication in Astronomy and Astrophysics, comments welcom

    A new wavelength calibration for echelle spectrographs using Fabry-Perot etalons

    Full text link
    The study of Earth-mass extrasolar planets via the radial-velocity technique and the measurement of the potential cosmological variability of fundamental constants call for very-high-precision spectroscopy at the level of \updelta\lambda/\lambda<10^{-9}. Wavelength accuracy is obtained by providing two fundamental ingredients: 1) an absolute and information-rich wavelength source and 2) the ability of the spectrograph and its data reduction of transferring the reference scale (wavelengths) to a measurement scale (detector pixels) in a repeatable manner. The goal of this work is to improve the wavelength calibration accuracy of the HARPS spectrograph by combining the absolute spectral reference provided by the emission lines of a thorium-argon hollow-cathode lamp (HCL) with the spectrally rich and precise spectral information of a Fabry-P\'erot-based calibration source. On the basis of calibration frames acquired each night since the Fabry-P\'erot etalon was installed on HARPS in 2011, we construct a combined wavelength solution which fits simultaneously the thorium emission lines and the Fabry-P\'erot lines. The combined fit is anchored to the absolute thorium wavelengths, which provide the `zero-point' of the spectrograph, while the Fabry-P\'erot lines are used to improve the (spectrally) local precision. The obtained wavelength solution is verified for auto-consistency and tested against a solution obtained using the HARPS Laser-Frequency Comb (LFC). The combined thorium+Fabry-P\'erot wavelength solution shows significantly better performances compared to the thorium-only calibration. The presented techniques will therefore be used in the new HARPS and HARPS-N pipeline, and will be exported to the ESPRESSO spectrograph.Comment: 15 pages, 8 figure

    Spectroscopic direct detection of reflected light from extra-solar planets

    Full text link
    At optical wavelengths, an exoplanet's signature is essentially reflected light from the host star - several orders of magnitude fainter. Since it is superimposed on the star spectrum its detection has been a difficult observational challenge. However, the development of a new generation of instruments like ESPRESSO and next generation telescopes like the E-ELT put us in a privileged position to detect these planets' reflected light as we will have access to extremely high signal-to-noise ratio spectra. With this work, we propose an alternative approach for the direct detection of the reflected light of an exoplanet. We simulated observations with ESPRESSO@VLT and HIRES@E-ELT of several star+planet systems, encompassing 10h of the most favourable orbital phases. To the simulated spectra we applied the Cross Correlation Function to operate in a much higher signal-to-noise ratio domain than when compared with the spectra. The use of the Cross-Correlation Function permitted us to recover the simulated the planet signals at a level above 3 \sigma_{noise} significance on several prototypical (e.g., Neptune type planet with a 2 days orbit with the VLT at 4.4 \sigma_{noise} significance) and real planetary systems (e.g., 55 Cnc e with the E-ELT at 4.9 \sigma_{noise} significance). Even by using a more pessimistic approach to the noise level estimation, where systematics in the spectra increase the noise 2-3 times, the detection of the reflected light from large close-orbit planets is possible. We have also shown that this kind of study is currently within reach of current instruments and telescopes (e.g., 51 Peg b with the VLT at 5.2 \sigma_{noise} significance), although at the limit of their capabilities.Comment: Accepted for Publication on MNRAS: 2013 August 29; Online Article: http://mnras.oxfordjournals.org/content/early/2013/09/27/mnras.stt1642; 5 Figures, 11 page

    On the long-term correlation between the flux in the Ca II H & K and Halpha lines for FGK stars

    Full text link
    The re-emission in the cores of the Ca II H & K and Hα\alpha lines, are well known proxies of stellar activity. However, these activity indices probe different activity phenomena, the first being more sensitive to plage variation, while the other one being more sensitive to filaments. In this paper we study the long-term correlation between log⁥RHKâ€Č\log R'_{HK} and log⁥IHα\log I_{H\alpha}, two indices based on the Ca II H & K and Hα\alpha lines respectively, for a sample of 271 FGK stars using measurements obtained over a ∌\sim9 year time span. Because stellar activity is one of the main obstacles to the detection of low-mass and long-period planets, understanding further this activity index correlation can give us some hints about the optimal target to focus on, and ways to correct for these activity effects. We found a great variety of long-term correlations between log⁥RHKâ€Č\log R'_{HK} and log⁥IHα\log I_{H\alpha}. Around 20% of our sample has strong positive correlation between the indices while about 3% show strong negative correlation. These fractions are compatible with those found for the case of early-M dwarfs. Stars exhibiting a positive correlation have a tendency to be more active when compared to the median of the sample, while stars showing a negative correlation are more present among higher metallicity stars. There is also a tendency for the positively correlated stars to be more present among the coolest stars, a result which is probably due to the activity level effect on the correlation. Activity level and metallicity seem therefore to be playing a role on the correlation between log⁥RHKâ€Č\log R'_{HK} and log⁥IHα\log I_{H\alpha}. Possible explanations based on the influence of filaments for the diversity in the correlations between these indices are discussed in this paper.Comment: 18 pages, 13 figures, 4 tables, accepted for publication in Astronomy and Astrophysic
    • 

    corecore